BackgroundHuman saliva, a complex secretion that contains a mixture of inorganic and organic molecules, plays an essential role in the maintenance of oral health. Mucins are the major macromolecular component of the secretion and are considered the first line of defense for epithelial tissues. The aim of this study was to compare levels of mucins (MUC5B, MUC7, and MUC1) in saliva of young subjects with dental caries.Material/MethodsAll patients had DMF (decay/missing/filled) higher than value 0. Eight subjects with DMF=3 (control group) and 27 adolescents with DMF >11 (research group) were recruited for this study. Clinical evaluation procedures were oral examination, including tooth, periodontal, oral mucosal status, and collection of saliva samples. Saliva was collected for mucin assay. Enzyme-linked immunosorbent assay was used to quantitate MUC5B, MUC7, and MUC1.ResultsOur results indicate that adolescents with very high intensity of dental caries disease had increased levels of MUC1 and MUC5B. The membrane mucin MUC1 protein levels in the group with DMF>11 (research group) were higher compared to the group with DMF=3 (control group), and the increase was statistically significant (p=0.011). Similarly, secreted mucin MUC5B protein levels were higher (p=0.06) in the group with DMF>11 (research group). Although MUC7 protein levels were slightly reduced in symptomatic subjects, the decrease was statistically insignificant (p=0.918).ConclusionsOur data suggest links between the production of mucins, especially MUC1 and MUC5B in saliva, and dental caries disease.
Mucin 1 (MUC1) is overexpressed in various cancer cells especially in breast cancer cells. There are known research works on the use of anti-MUC1 antibody with docetaxel in ovarian cancer, but there are no data about combined therapy platinum compounds with anti-MUC1 in breast cancer. The aim of the study was to evaluate the antiproliferative properties of a new dinuclear platinum(II) complex (Pt12) used with anti-MUC1 in human breast cancer cells. The dinuclear platinum(II) complex (Pt12) has been synthesized, and its cytotoxicity with anti-MUC1 has been tested in both MCF-7 and MDA-MB-231 breast cancer cells. In this study, the effects of Pt12 with anti-MUC1 on collagen and DNA biosynthesis in human breast cancer cells were compared to those evoked by cisplatin and cisplatin with anti-MUC1. The mechanism of action of Pt12 with anti-MUC1 was studied employing flow cytometry assessment of annexin V binding assay. It was found that Pt12 with anti-MUC1 was more active inhibitor of DNA and collagen synthesis as well more cytotoxic agent than Pt12 alone and cisplatin with anti-MUC1. Cytotoxicity of Pt12 with anti-MUC1 against breast cancer cells is due to apoptotic cell death as well as necrotic cell death. These results indicate that the use of Pt12 with anti-MUC1 may constitute a novel strategy in the chemotherapy of breast cancer tumors.
New strategy of cancer’s targeting treatment is combining monoclonal antibodies with chemotherapeutic agents. An important goal of targeted therapy appears to be a transmembrane glycoprotein type I—mucin 1 (MUC1), which is overexpressed in tumors of epithelial origin, especially in breast cancer. The goal of the study was to check the effect of monoclonal antibody against MUC1 with novel platinum(II) complex (Pt12) on selected aspects of apoptosis in human MDA-MB-231 breast cancer cells. The number of apoptotic and necrotic cells was measured using annexin V binding assay. The decrease of mitochondrial membrane potential (MMP) and DNA fragmentation was analyzed. Finally, the influence of novel platinum(II) complex (Pt12) used with anti-MUC1 on the concentration of selected markers of apoptosis such as Bax, caspase-8, -9, and caspase-3 was performed using ELISA. The results from combined treatment were compared with those obtained using monotherapy. In our study, we proved that anti-MUC1 used in combination with Pt12 strongly induced apoptosis in MDA-MB-231 breast cancer cell line. The effect was stronger than treatment with Pt12, cisplatin, anti-MUC1, and anti-MUC1 used with cisplatin. We also observed the highest decrease of MMP and the strongest DNA fragmentation after such a combined treatment. The results obtained from ELISA showed increased concentration of Bax, caspases-8, -9, -3 compared to monotherapy. Our study proved that Pt12 together with anti-MUC1 strongly induced apoptosis in estrogen-negative breast cancer cell line (MDA-MB-231). The apoptosis may go through extrinsic pathway associated with caspase-8 as well as intrinsic pathway connected with caspase-9.
Mucin 1 (MUC1) is a high molecular weight transmembrane glycoprotein, that is overexpressed in >90% of breast cancers. It serves a crucial role in anti-apoptosis and tumor progression. MUC1 interacts with proteins in the extracellular matrix, at the cell membrane, in the cytoplasm and in the nucleus. The aim of the present study was to investigate the mechanism of anticancer action induced by novel berenil complex of platinum(II) (Pt12) together with a monoclonal antibody against MUC1 in breast cancer MCF-7 cells. The effect of combined treatment on the concentration of selected markers of apoptosis including proapoptotic B-cell lymphoma 2 associated X protein (Bax), caspase-8, cytochrome c and caspase-9, as well as selected proteins involved in intracellular signal transduction pathways including p53, phosphoinositide 3-kinase and phosphorylated protein kinase B (p-Akt) were analyzed. The results of the present study demonstrated that combined treatment may be a promising strategy in anticancer treatment and represents an alternative to monotherapy. All compounds used alone (Pt12, cisplatin and the anti-MUC1 antibody) increased the concentration of proapoptotic Bax, cytochrome c and caspase-9 in comparison with control, thus suggesting that they activated the mitochondrial apoptotic pathway. Pt12 alone significantly increased the concentration of caspase-8, which is responsible for the initiation of the extrinsic apoptotic pathway. However, the strongest effect was observed following Pt12 (20 µM) treatment combined with the anti-MUC1 antibody (10 µg/ml). These two compounds together strongly induced apoptosis in MCF-7 breast cancer cells via the external and internal apoptotic pathways. It was also demonstrated that combined treatment based on Pt12 and the anti-MUC1 antibody significantly reduced p-Akt concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.