Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools.
We consider an atomistic model of thermal welding at the polymer‐polymer interface of a polyetherimide/polycarbonate blend, motivated by applications to 3D manufacturing in space. We follow diffusion of semiflexible chains at the interface and analyze strengthening of the samples as a function of the welding time tw by simulating the strain–stress and shear viscosity curves. The time scales for initial wetting, and for fast and slow diffusion, are revealed. It is shown that each component of the polymer blend has its own characteristic time of slow diffusion at the interface. Analysis of strain–stress demonstrates saturation of the Young's modulus at tw = 240 ns, while the tensile strength continues to increase. The shear viscosity is found to have a very weak dependence on the welding time for tw > 60 ns. It is shown that both strain–stress and shear viscosity curves agree with experimental data.
We study a molecular dynamics model of a polymer-polymer interface for a polyetherimide/polycarbonate blend, including its thermodynamic properties, its chain reptation, and its corresponding welding characteristics. The strength of the sample is analyzed by measuring strain-stress curves in simulations of uni-axial elongation. The work is motivated by potential applications to 3D manufacturing in space.
An engineering risk assessment of the conditions for massive explosions of cryogenic liquid hydrogen-oxygen rockets during launch accidents is presented. The assessment is based on the analysis of the data of purposeful rupture experiments with liquid oxygen and hydrogen tanks and on an interpretation of these data via analytical semiquantitative estimates and numerical simulations of simplified models for the whole range of the physical phenomena governing the outcome of a propellant-tank breach. The following sequence of events is reconstructed: rupture of fuel tanks, escape of the fluids from the ruptured tanks, liquid film boiling, fragmentation of liquid flow, formation of aerosol oxygen and hydrogen clouds, mixing of the clouds, droplet evaporation, self-ignition of the aerosol clouds, and aerosol combustion. The power of the explosion is determined by a small fraction of the escaped cryogens that become well mixed within the aerosol cloud during the delay time between rupture and ignition. Several scenarios of cavitation-induced self-ignition of the cryogenic hydrogen/oxygen mixture are discussed. The explosion parameters in a particular accident are expected to be highly varied and unpredictable due to randomness of the processes of formation, mixing, and ignition of oxygen and hydrogen clouds. Under certain conditions rocket accidents may result in very strong explosions with blast pressures from a few atm up to 100 atm. The most dangerous situations and the foreseeable risks for space missions are uncovered.
Interaction of acoustic waves with water aerosol layers is analyzed in the context of the problem of solid booster ignition overpressure suppression. In contrast to the conventional approach to ignition overpressure suppression, which aims at using water to quench the sources of the ignition overpressure waves, this study focuses on blocking the ignition overpressure wave propagation, using reflection and attenuation of the wave by the water aerosol layers. The study considers interaction of the waves with aerosol layers of large mass loading for varying sizes of the droplets. The size of the droplets is shown to substantially affect the mechanisms of interaction with the waves. The criteria for the crossover between different mechanisms are established as functions of the droplet size and the ignition overpressure wave parameters. The optimal parameters and designs for water aerosol sprays are proposed that maximize the ignition overpressure suppression. These results were obtained using the nozzle and the exhaust hole geometries similar to those of the space shuttle. Remarkably, it is found that various a priori reasonable designs of the aerosol and water sprays may increase the ignition overpressure impact on the vehicle, increasing the risk of vehicle damage. Nomenclature C D = drag coefficient C P = specific heat at constant pressure, J∕kg∕K c = sound velocity, m∕s d drop = droplet diameter, m f L = liquid volume fraction h = layer width, m j = mass flux, kg∕m 2 ∕s k = wave vector, 1∕m L D = thermodiffusion length, m M = million p = fluid pressure, Pa R g = gas constant, J∕kg∕K r drop = droplet radius, m T = fluid temperature, K T aer = transmission coefficient T wave = period of acoustic wave, s t = time, s u = gas velocity, m∕s α = attenuation coefficient, m −1 κ = thermal conductivity, W∕m∕K λ = wavelength, m μ = dynamic viscosity, Pa · s ν = frequency, Hz ρ = fluid mass density, kg∕m 3 σ = surface tension, N∕m σ st = Stefan-Boltzmann constant τ = typical time, s ω = angular frequency Subscripts aer = aerosol drop = droplet G = gas ign = ignition L = liquid s = surface, saturation v = vapor w = water 0 = initial state
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.