Abstract-This paper presents an efficient algorithm for segmenting different types of pulmonary nodules including high and low contrast nodules, nodules with vasculature attachment, and nodules in the close vicinity of the lung wall or diaphragm. The algorithm performs an adaptive sphericity oriented contrast region growing on the fuzzy connectivity map of the object of interest. This region growing is operated within a volumetric mask which is created by first applying a local adaptive segmentation algorithm that identifies foreground and background regions within a certain window size. The foreground objects are then filled to remove any holes, and a spatial connectivity map is generated to create a 3-D mask. The mask is then enlarged to contain the background while excluding unwanted foreground regions. Apart from generating a confined search volume, the mask is also used to estimate the parameters for the subsequent region growing, as well as for repositioning the seed point in order to ensure reproducibility. The method was run on 815 pulmonary nodules. By using randomly placed seed points, the approach was shown to be fully reproducible. As for acceptability, the segmentation results were visually inspected by a qualified radiologist to search for any gross misssegmentation. 84% of the first results of the segmentation were accepted by the radiologist while for the remaining 16% nodules, alternative segmentation solutions that were provided by the method were selected.
ColonCAR version 1.2 is sensitive for polyp detection, with a clinically acceptable false-positive rate. ColonCAR version 1.2 has a synergistic effect to the reviewer alone, and its standalone performance may exceed even that of experts.
Abstract-Coronary artery calcification (CAC) is quantified based on a computed tomography (CT) scan image. A calcified region is identified. Modified expectation maximization (MEM) of a statistical model for the calcified and background material is used to estimate the partial calcium content of the voxels. The algorithm limits the region over which MEM is performed. By using MEM, the statistical properties of the model are iteratively updated based on the calculated resultant calcium distribution from the previous iteration. The estimated statistical properties are used to generate a map of the partial calcium content in the calcified region. The volume of calcium in the calcified region is determined based on the map. The experimental results on a cardiac phantom, scanned 90 times using 15 different protocols, demonstrate that the proposed method is less sensitive to partial volume effect and noise, with average error of 9.5% (standard deviation (SD) of 5-7mm 3 ) compared with 67% (SD of 3-20mm 3 ) for conventional techniques. The high reproducibility of the proposed method for 35 patients, scanned twice using the same protocol at a minimum interval of 10 min, shows that the method provides 2-3 times lower interscan variation than conventional techniques.Index Terms-Coronary artery calcification, expectation-maximization, partial volume effect, proportion map, volume measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.