Recently, self-centering earthquake resistant systems have attracted attention because of their promising potential in controlling the residual drifts and reducing repair costs after earthquake events. Considerable portion of self-centering research is based on using short-segment superelastic shape memory alloy (SMA) braces as strengthening technique because of the lower modulus of elasticity of SMA in comparison with that of steel. The goal of this study is to investigate the ductility characteristics of these newly proposed short-segment SMA braces to evaluate their safety levels against fracture failures under earthquake loading. This goal has been achieved by selecting an appropriate seismic performance criterion for steel frames equipped with SMA braces, defining the level of strain capacity of SMA and calculating the strain demands in the SMA braces by conducting a series of pushover and earthquake time history analyzes on typical frame structure. The results obtained in this study indicated the inability of short-segment SMA designs to provide adequate ductility to the lateral resistant systems. An alternative approach is introduced by using hybrid steel-SMA braces that are capable of controlling the residual drifts and providing the structure with adequate lateral stiffness.
The seismic performance of low-rise nonductile reinforced concrete (RC) buildings rehabilitated using concentric steel bracing is investigated. A three-story building was analysed using various ground motion records. The effectiveness of the steel bracing in rehabilitating the three-story building was examined. The effect of the distribution of the steel bracing along the height of the RC frames on the seismic performance of the rehabilitated building was studied. The behaviour of the nonductile RC frame members is represented using a beam-column element capable of modelling the strength softening and the effects of the axial force on the yield moment and the deformation capacities at peak strength of these members. The performance of the building is evaluated in terms of global and story drifts and damage indices. A simplified approach is proposed for selecting the proper brace distribution.Key words: reinforced concrete, frame, nonductile, rehabilitation, concentric steel brace.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.