Upregulation of retinal dopaminergic activity may be a target treatment for myopia progression. This study aimed to explore the viability of inducing changes in retinal electrical activity with short-wavelength light targeting melanopsin-expressing retinal ganglion cells (ipRGCs) passing through the optic nerve head. Fifteen healthy non-myopic or myopic young adults were recruited and underwent stimulation with blue light using a virtual reality headset device. Amplitudes and implicit times from photopic 3.0 b-wave and pattern electroretinogram (PERG) were measured at baseline and 10 and 20 min after stimulation. Relative changes were compared between non-myopes and myopes. The ERG b-wave amplitude was significantly larger 20 min after blind-spot stimulation compared to baseline (p < 0.001) and 10 min (p < 0.001) post-stimulation. PERG amplitude P50-N95 also showed a significant main effect for ‘Time after stimulation’ (p < 0.050). Implicit times showed no differences following blind-spot stimulation. PERG and b-wave changes after blind-spot stimulation were stronger in myopes than non-myopes. It is possible to induce significant changes in retinal electrical activity by stimulating ipRGCs axons at the optic nerve head with blue light. The results suggest that the changes in retinal electrical activity are located at the inner plexiform layer and are likely to involve the dopaminergic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.