A priori determining the ideal number of component classifiers of an ensemble is an important problem. The volume and velocity of big data streams make this even more crucial in terms of prediction accuracies and resource requirements. There is a limited number of studies addressing this problem for batch mode and none for online environments. Our theoretical framework shows that using the same number of independent component classifiers as class labels gives the highest accuracy. We prove the existence of an ideal number of classifiers for an ensemble, using the weighted majority voting aggregation rule. In our experiments, we use two state-of-the-art online ensemble classifiers with six synthetic and six real-world data streams. The violation of providing independent component classifiers for our theoretical framework makes determining the exact ideal number of classifiers nearly impossible. We suggest upper bounds for the number of classifiers that gives the highest accuracy. An important implication of our study is that comparing online ensemble classifiers should be done based on these ideal values, since comparing based on a fixed number of classifiers can be misleading.
The number of component classifiers chosen for an ensemble greatly impacts the prediction ability. In this paper, we use a geometric framework for a priori determining the ensemble size, which is applicable to most of existing batch and online ensemble classifiers. There are only a limited number of studies on the ensemble size examining Majority Voting (MV) and Weighted Majority Voting (WMV). Almost all of them are designed for batch-mode, hardly addressing online environments. Big data dimensions and resource limitations, in terms of time and memory, make determination of ensemble size crucial, especially for online environments. For the MV aggregation rule, our framework proves that the more strong components we add to the ensemble, the more accurate predictions we can achieve. For the WMV aggregation rule, our framework proves the existence of an ideal number of components, which is equal to the number of class labels, with the premise that components are completely independent of each other and strong enough. While giving the exact definition for a strong and independent classifier in the context of an ensemble is a challenging task, our proposed geometric framework provides a theoretical explanation of diversity and its impact on the accuracy of predictions. We conduct a series of experimental evaluations to show the practical value of our theorems and existing challenges.
Podcasts are a large and growing repository of spoken audio. As an audio format, podcasts are more varied in style and production type than broadcast news, contain more genres than typically studied in video data, and are more varied in style and format than previous corpora of conversations. When transcribed with automatic speech recognition they represent a noisy but fascinating collection of documents which can be studied through the lens of natural language processing, information retrieval, and linguistics. Paired with the audio files, they are also a resource for speech processing and the study of paralinguistic, sociolinguistic, and acoustic aspects of the domain. We introduce the Spotify Podcast Dataset, a new corpus of 100,000 podcasts. We demonstrate the complexity of the domain with a case study of two tasks: (1) passage search and (2) summarization. This is orders of magnitude larger than previous speech corpora used for search and summarization. Our results show that the size and variability of this corpus opens up new avenues for research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.