Diagnosis autocoding is intended to both improve the productivity of clinical coders and the accuracy of the coding. We investigate the applicability of deep learning at autocoding of radiology reports using International Classification of Diseases (ICD). Deep learning methods are known to require large training data. Our goal is to explore how to use these methods when the training data is sparse, skewed and relatively small, and how their effectiveness compares to conventional methods. We identify optimal parameters for setting up a convolutional neural network for autocoding with comparable results to that of conventional methods.
Evidence Based Medicine (EBM) provides a framework that makes use of the current best evidence in the domain to support clinicians in the decision making process. In most cases, the underlying foundational knowledge is captured in scientific publications that detail specific clinical studies or randomised controlled trials. Over the course of the last two decades, research has been performed on modelling key aspects described within publications (e.g., aims, methods, results), to enable the successful realisation of the goals of EBM. A significant outcome of this research has been the PICO (Population/Problem-Intervention-Comparison-Outcome) structure, and its refined version PIBOSO (Population-Intervention-Background-Outcome-Study Design-Other), both of which provide a formalisation of these scientific artefacts. Subsequently, using these schemes, diverse automatic extraction techniques have been proposed to streamline the knowledge discovery and exploration process in EBM. In this paper, we present a Machine Learning approach that aims to classify sentences according to the PIBOSO scheme. We use a discriminative set of features that do not rely on any external resources to achieve results comparable to the state of the art. A corpus of 1000 structured and unstructured abstracts - i.e., the NICTA-PIBOSO corpus - is used for training and testing. Our best CRF classifier achieves a micro-average F-score of 90.74% and 87.21%, respectively, over structured and unstructured abstracts, which represents an increase of 25.48 percentage points and 26.6 percentage points in F-score when compared to the best existing approaches.
Background
In many hospitals, operating theatres are not used to their full potential due to the dynamic nature of demand and the complexity of theatre scheduling. Theatre inefficiencies may lead to access block and delays in treating patients requiring critical care. This study aims to employ operating theatre data to provide decision support for improved theatre management.
Method
Historical observations are used to predict long-term daily surgery caseload in various levels of granularity, from emergency versus elective surgeries to clinical specialty-level demands. A statistical modelling and a machine learning-based approach are developed to estimate daily surgery demand. The statistical model predicts daily demands based on historical observations through weekly rolling windows and calendar variables. The machine learning approach, based on regression algorithms, learns from a combination of temporal and sequential features. A de-identified data extract of elective and emergency surgeries at a major 783-bed metropolitan hospital over four years was used. The first three years of data were used as historical observations for training the models. The models were then evaluated on the final year of data.
Results
Daily counts of overall surgery at a hospital-level could be predicted with approximately 90% accuracy, though smaller subgroups of daily demands by medical specialty are less predictable. Predictions were generated on a daily basis a year in advance with consistent predictive performance across the forecast horizon.
Conclusion
Predicting operating theatre demand is a viable component in theatre management, enabling hospitals to provide services as efficiently and effectively as possible to obtain the best health outcomes. Due to its consistent predictive performance over various forecasting ranges, this approach can inform both short-term staffing choices as well as long-term strategic planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.