Content-based image retrieval (CBIR) systems have emerged as crucial tools in the field of computer vision, allowing for image search based on visual content rather than relying solely on metadata. This survey paper presents a comprehensive overview of CBIR, emphasizing its role in object detection and its potential to identify and retrieve visually similar images based on content features. Challenges faced by CBIR systems, including the semantic gap and scalability, are discussed, along with potential solutions. It elaborates on the semantic gap, which arises from the disparity between low-level features and high-level semantic concepts, and explores approaches to bridge this gap. One notable solution is the integration of relevance feedback (RF), empowering users to provide feedback on retrieved images and refine search results iteratively. The survey encompasses longterm and short-term learning approaches that leverage RF for enhanced CBIR accuracy and relevance. These methods focus on weight optimization and the utilization of active learning algorithms to select samples for training classifiers. Furthermore, the paper investigates machine learning techniques and the utilization of deep learning and convolutional neural networks to enhance CBIR performance. This survey paper plays a significant role in advancing the understanding of CBIR and RF techniques. It guides researchers and practitioners in comprehending existing methodologies, challenges, and potential solutions while fostering knowledge dissemination and identifying research gaps. By addressing future research directions, it sets the stage for advancements in CBIR that will enhance retrieval accuracy, usability, and effectiveness in various application domains.
Content-based image retrieval is one of the interesting subjects in image processing and machine vision. In image retrieval systems, the query image is compared with images in the database to retrieve images containing similar content. Image comparison is done using features extracted from the query and database images. In this paper, the features are extracted based on the human visual system. Since the human visual system considers the texture and the edge orientation in images for comparison, the colour difference histogram associated with the image's texture and edge orientation is extracted as a feature. In this paper, the features are selected using the Shannon entropy criterion. The proposed method is tested using the Corel-5K and Corel-10K databases. The precision and recall criteria were used to evaluate the proposed system. The experimental results show the ability of the proposed system for more accurate retrieval rather than recently content-based image retrieval systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.