Content-based image retrieval (CBIR) systems have emerged as crucial tools in the field of computer vision, allowing for image search based on visual content rather than relying solely on metadata. This survey paper presents a comprehensive overview of CBIR, emphasizing its role in object detection and its potential to identify and retrieve visually similar images based on content features. Challenges faced by CBIR systems, including the semantic gap and scalability, are discussed, along with potential solutions. It elaborates on the semantic gap, which arises from the disparity between low-level features and high-level semantic concepts, and explores approaches to bridge this gap. One notable solution is the integration of relevance feedback (RF), empowering users to provide feedback on retrieved images and refine search results iteratively. The survey encompasses longterm and short-term learning approaches that leverage RF for enhanced CBIR accuracy and relevance. These methods focus on weight optimization and the utilization of active learning algorithms to select samples for training classifiers. Furthermore, the paper investigates machine learning techniques and the utilization of deep learning and convolutional neural networks to enhance CBIR performance. This survey paper plays a significant role in advancing the understanding of CBIR and RF techniques. It guides researchers and practitioners in comprehending existing methodologies, challenges, and potential solutions while fostering knowledge dissemination and identifying research gaps. By addressing future research directions, it sets the stage for advancements in CBIR that will enhance retrieval accuracy, usability, and effectiveness in various application domains.
With the recent increase in data online, discovering meaningful opportunities can be time-consuming and complicated for many individuals. To overcome this data overload challenge, we present a novel text-content-based recommender system as a valuable tool to predict user interests. To that end, we develop a specific procedure to create user models and item feature-vectors, where items are described in free text. The user model is generated by soliciting from a user a few keywords and expanding those keywords into a list of weighted near-synonyms. The item feature-vectors are generated from the textual descriptions of the items, using modified tf-idf values of the users' keywords and their near-synonyms. Once the users are modeled and the items are abstracted into feature vectors, the system returns the maximum-similarity items as recommendations to that user. Our experimental evaluation shows that our method of creating the user models and item feature-vectors resulted in higher precision and accuracy in comparison to well-known feature-vector-generating methods like Glove and Word2Vec. It also shows that stemming and the use of a modified version of tf-idf increase the accuracy and precision by 2% and 3%, respectively, compared to non-stemming and the standard tf-idf definition. Moreover, the evaluation results show that updating the user model from usage histories improves the precision and accuracy of the system. This recommender system has been developed as part of the Agnes application, which runs on iOS and Android platforms and is accessible through the Agnes website.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.