With the recent increase in data online, discovering meaningful opportunities can be time-consuming and complicated for many individuals. To overcome this data overload challenge, we present a novel text-content-based recommender system as a valuable tool to predict user interests. To that end, we develop a specific procedure to create user models and item feature-vectors, where items are described in free text. The user model is generated by soliciting from a user a few keywords and expanding those keywords into a list of weighted near-synonyms. The item feature-vectors are generated from the textual descriptions of the items, using modified tf-idf values of the users' keywords and their near-synonyms. Once the users are modeled and the items are abstracted into feature vectors, the system returns the maximum-similarity items as recommendations to that user. Our experimental evaluation shows that our method of creating the user models and item feature-vectors resulted in higher precision and accuracy in comparison to well-known feature-vector-generating methods like Glove and Word2Vec. It also shows that stemming and the use of a modified version of tf-idf increase the accuracy and precision by 2% and 3%, respectively, compared to non-stemming and the standard tf-idf definition. Moreover, the evaluation results show that updating the user model from usage histories improves the precision and accuracy of the system. This recommender system has been developed as part of the Agnes application, which runs on iOS and Android platforms and is accessible through the Agnes website.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.