A high-velocity oxygen fuel (HVOF) system was employed to prepare a Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 amorphous coating on mild steel. The electrochemical behavior of the resultant coatings, namely as-sprayed coating and vacuum heat-treated coating (at 650 °C and 800 °C), were investigated in a 3.5% NaCl solution at variable temperatures using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, optical microscopy (OM), and XRD diffraction. Moreover, COMSOL Multiphysics version 5.5 software were employed for predicting the galvanic corrosion of amorphous material immersed in an aqueous NaCl solution, using the software finite element kit. The experiments demonstrated that the coatings’ pitting resistance was significantly affected by temperature. The results also showed that temperature affected the pitting corrosion rate and changed the shape of the pits. However, the changes were not as extreme as those observed in stainless steel. Furthermore, there was no significant difference between the as-sprayed coating and the vacuum-heat-treated coating at 650 °C. At low NaCl concentrations at and temperatures below the critical pitting temperature, the resulting pits were significantly small with a hemisphere-like. By contrast, at a higher NaCl concentration at 70 °C, particularly in the case of heating at 650 °C, the pits appearing on the Fe-based amorphous coating were vast and sometimes featured a lacy cover.
The fracture and crack growth of materials can be practically and conveniently predicted through numerical analysis and linear elastics fracture mechanics. On this basis, the current study aims to present experimental work supported by a numerical technique for mimicking the crack propagation by Version 5.6 of COMSOL Multiphysics (version 5.6), used for the simulation of the coating made from Fe-based amorphous material with a thickness of 300 µm. The paper shows the effects of mixed-mode loading on cohesive zone parameters attained from load-crack mouth opening displacement (CMOD) curves. The microstructure dominates the fracture, which in mode I is altered from all-transgranular cleavage to nearly all-intergranular structure in mode II. Two common criteria for failure are linked to the mixed-mode results: Maximum energy release rate criterion (Maximum G) and maximum tensile stress criterion (Maximum S). However, distinguishing between the two criteria is made impossible by the large scatter in the data. The stress intensity factor is the basis for the. The stress intensity factor is the leading parameter facilitated by the singular element and should be estimated with accuracy. With the aim of comparing each criterion and illustrating the numerical schemes’ robustness, a number of examples are presented. It can be concluded that the Maximum G and Maximum S were successful and accurate in predicting the propagation of the Fe-based amorphous material prepared on mild steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.