At present, surveillance is attracting attention in the field of UAV development. In particular, border surveillance plays a vital role in obtaining the required data around the border and for assisting in military operations. The primary function of this Hybrid UAV (VTOL and Fixed Wing) is to provide prerequisite data, captured during day/night surveillance, to the respective database. One of the primary problems that arise in border patrolling is the use of the UAV under different environmental conditions, thereby reducing its endurance firmly. In addition to the surveillance equipment, energy harvesting techniques are involved in solving the problem of endurance. The piezoelectric energy harvester and solar panels are added to harvest electrical energy in the UAV. Based on this application, the conceptual design of the Hybrid UAV, based on nature, was designed and investigated theoretically, as well as computationally. A series of analysis, which includes Computational Fluid Dynamics, Finite Element Analysis and Analytical approach, was used to determine the energy harvested from the energy harvester. This work confirms the proposed integrated engineering approach for the estimation of renewable energy, via PVEH patches, and the same approach is thus offered to researchers for subsequent applications. Additionally, a hybrid energy idea for newly developed drones was proposed in this work. This concept will be extensively used in the unmanned aircraft system sectors.
Self-heating of nanocomposite materials based on the joule heating effect is suitable for numerous engineering applications. In this study, a highefficiency self-heating nanocomposite, using high conductive multi-walled carbon nanotubes (MWCNTs)-based phenolic resin, was fabricated with a hot press method. The microstructure and the thermal stability of self-heating nanocomposite were studied by X-ray diffraction, scanning electronic microscopy, and thermogravimetric tests. Electromechanical and thermal performance tests were conducted to investigate their potential as a self-heating application. Results showed that the compressive strength, modulus, and the piezo-resistive behaviour were higher after adding MWCNTs to the phenolic resin, indicating better load transfer and self-damage sensing as well. Moreover, at 4.0 wt% of MWCNTs concentration, the electrical conductivity of a self-heating nanocomposite showed a higher value of 13.26 S/m which was also found to be proportionally increased with the thickness of the samples, it was ≈25.5 and ≈12.8 S/m for 10 and 3 mm, respectively. In addition, a steady-state temperature of ≈110°C could be reached at low applied volts (8 V) as well as its heating performance was significantly dependent on the input power and the thickness of the sample. This is also confirmed by statistical results between the sample with thicknesses of 3 and 10 mm in terms of power consumption with P value ≈ .0001. Furthermore, the influence of Joule heating was estimated analytically based on the one-dimensional heat transfer equation in companying with other previous models. The estimated distributed temperatures values were in good agreement with the experimental results. The selfheating nanocomposite described in this study has the potential to be used in various industrial applications and a wide range of sectors due to its ability to self-damage sensing, easy fabrication, and high heating efficiency at low power consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.