Rare earth elements (REE) are present at low concentrations (hundreds of ppm) in phosphoric acid solutions produced by the leaching of phosphate ores by sulfuric acid. The strongly acidic and complexing nature of this medium, as well as the presence of metallic impurities (including iron and uranium), require the development of a particularly cost effective process for the selective recovery of REE. Compared to the classical but costly solvent extraction, liquid-solid extraction using commercial chelating ion exchange resins could be an interesting alternative. Among the different resins tested in this paper (Tulsion CH-93, Purolite S940, Amberlite IRC-747, Lewatit TP-260, Lewatit VP OC 1026, Monophos, Diphonix,) the aminophosphonic IRC-747, and aminomethylphosphonic TP-260 are the most promising. Both of them present similar performances in terms of maximum sorption capacity estimated to be 1.8 meq/g dry resin and in adsorption kinetics, which appears to be best explained by a moving boundary model controlled by particle diffusion.
Reactive silica additives, such as clays, can increase the filterability of phosphogypsum (PG) during wet phosphoric acid production from phosphate rock (PR). In this study, the effect of adding inexpensive fly ash waste (34 kg per t PR) together with lower quantities of pure silica (8.5 kg per t PR) on the radioactivity of PG was investigated. The addition of fly ash waste/pure silica reduced the radiological activity of the PG by roughly 30%. The reduction was attributed to decreased activities from 238U (60% reduction) and 226Ra (30% reduction) in PG. Besides, P2O5 losses were slightly decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.