The identification of a mental disorder at its early stages is a challenging task because it requires clinical interventions that may not be feasible in many cases. Social media such as online communities and blog posts have shown some promising features to help detect and characterise mental disorder at an early stage. In this work, we make use of user-generated content to identify depression and further characterise its degree of severity. We used the user-generated post contents and its associated mood tag to understand and differentiate the linguistic style and sentiments of the user content. We applied machine learning and statistical analysis methods to discriminate the depressive posts and communities from non-depressive ones. The depression degree of a depressed post is identified using variations of valence values based on the mood tag. The proposed methodology achieved 90%, 95% and 92% accuracy for the classification of depressive posts, depressive communities and depression degree, respectively.
Purple urine bag syndrome (PUBS) is a rare condition in which there is purple discoloration of the urine with its collecting bag and associated tubing occurs. It is considered a benign condition. We report an unusual case of PUBS in an 87-year-old female from nursing home who had a history of recurrent UTI. She also had a history of ureteral obstruction requiring left nephrostomy tube. She was brought to emergency department with altered mental status which developed five days after the occurrence of purple discoloration of the urinary bag. Her urine culture grew vancomycin-resistant Enterococci (VRE) and Pseudomonas aeruginosa. She died within three days of hospitalization despite intensive care in tertiary center. This case highlights that PUBS may not always be benign and should be approached on a case-by-case basis because it may signal the underlying UTI which might be very difficult to treat. Failure of recognition of this peculiar color early could delay the appropriate intervention leading to fatal complication. This case also represents the rare occurrence of PUBS in the setting of nephrostomy tube.
Diabetes Mellitus (DM) is one of the most common chronic diseases leading to severe health complications that may cause death. The disease influences individuals, community, and the government due to the continuous monitoring, lifelong commitment, and the cost of treatment. The World Health Organization (WHO) considers Saudi Arabia as one of the top 10 countries in diabetes prevalence across the world. Since most of its medical services are provided by the government, the cost of the treatment in terms of hospitals and clinical visits and lab tests represents a real burden due to the large scale of the disease. The ability to predict the diabetic status of a patient with only a handful of features can allow cost-effective, rapid, and widely-available screening of diabetes, thereby lessening the health and economic burden caused by diabetes alone. The goal of this paper is to investigate the prediction of diabetic patients and compare the role of HbA1c and FPG as input features. By using five different machine learning classifiers, and using feature elimination through feature permutation and hierarchical clustering, we established good performance for accuracy, precision, recall, and F1-score of the models on the dataset implying that our data or features are not bound to specific models. In addition, the consistent performance across all the evaluation metrics indicate that there was no trade-off or penalty among the evaluation metrics. Further analysis was performed on the data to identify the risk factors and their indirect impact on diabetes classification. Our analysis presented great agreement with the risk factors of diabetes and prediabetes stated by the American Diabetes Association (ADA) and other health institutions worldwide. We conclude that by performing analysis of the disease using selected features, important factors specific to the Saudi population can be identified, whose management can result in controlling the disease. We also provide some recommendations learned from this research.
Experts have predicted that COVID-19 may prevail for many months or even years before it can be completely eliminated. A major problem in its cure is its early screening and detection, which will decide on its treatment. Due to the fast contactless spreading of the virus, its screening is unusually difficult. Moreover, the results of COVID-19 tests may take up to 48 h. That is enough time for the virus to worsen the health of the affected person. The health community needs effective means for identification of the virus in the shortest possible time. In this study, we invent a medical device utilized consisting of composable sensors to monitor remotely and in real-time the health status of those who have symptoms of the coronavirus or those infected with it. The device comprises wearable medical sensors integrated using the Arduino hardware interfacing and a smartphone application. An IoT framework is deployed at the backend through which various devices can communicate in real-time. The medical device is applied to determine the patient’s critical status of the effects of the coronavirus or its symptoms using heartbeat, cough, temperature and Oxygen concentration (SpO2) that are evaluated using our custom algorithm. Until now, it has been found that many coronavirus patients remain asymptomatic, but in case of known symptoms, a person can be quickly identified with our device. It also allows doctors to examine their patients without the need for physical direct contact with them to reduce the possibility of infection. Our solution uses rule-based decision-making based on the physiological data of a person obtained through sensors. These rules allow to classify a person as healthy or having a possibility of infection by the coronavirus. The advantage of using rules for patient’s classification is that the rules can be updated as new findings emerge from time to time. In this article, we explain the details of the sensors, the smartphone application, and the associated IoT framework for real-time, remote screening of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.