Blockchain is a revolutionary technology that is making a great impact on modern society due to its transparency, decentralization, and security properties. Blockchain gained considerable attention due to its very first application of Cryptocurrencies e.g., Bitcoin. In the near future, Blockchain technology is determined to transform the way we live, interact, and perform businesses. Recently, academics, industrialists, and researchers are aggressively investigating different aspects of Blockchain as an emerging technology. Unlike other Blockchain surveys focusing on either its applications, challenges, characteristics, or security, we present a comprehensive survey of Blockchain technology's evolution, architecture, development frameworks, and security issues. We also present a comparative analysis of frameworks, classification of consensus algorithms, and analysis of security risks & cryptographic primitives that have been used in the Blockchain so far. Finally, this paper elaborates on key future directions, novel use cases and open research challenges, which could be explored by researchers to make further advances in this field.
The identification of a mental disorder at its early stages is a challenging task because it requires clinical interventions that may not be feasible in many cases. Social media such as online communities and blog posts have shown some promising features to help detect and characterise mental disorder at an early stage. In this work, we make use of user-generated content to identify depression and further characterise its degree of severity. We used the user-generated post contents and its associated mood tag to understand and differentiate the linguistic style and sentiments of the user content. We applied machine learning and statistical analysis methods to discriminate the depressive posts and communities from non-depressive ones. The depression degree of a depressed post is identified using variations of valence values based on the mood tag. The proposed methodology achieved 90%, 95% and 92% accuracy for the classification of depressive posts, depressive communities and depression degree, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.