Background
In addition to their educational role, resilient schools have a good capacity in response to disasters. Due to the large student population, the schools can be a safe and secure environment during disasters, in addition to maintaining their performance after. Given the role and importance of the schools, the impact of culture and environment on resilience, without any indigenous and comprehensive tool for measuring the resilience in Iran, the study aimed to design and psychometrically evaluate the measurement tools.
Method
This study was conducted using a mixed-method sequential explanatory approach. The research was conducted in two main phases of production on items based on hybrid model and the psychometric evaluation of the tool. The second phase included validity (formal, content and construction) and reliability (multiplex internal similarity, consistency and reliability).
Result
The integration of systematic and qualitative steps resulted in entering 91 items into the pool of items. After formal and content validity, 73 items remained and 44 were omitted in exploratory factor analysis. A questionnaire with 5 factors explained 52.08% of total variance. Finally, after the confirmatory factor analysis, the questionnaire was extracted with 29 questions and 5 factors including "functional", "architectural", "equipment", "education" and "safety". Internal similarity and stability in all factors were evaluated as good.
Conclusion
The result showed that the 29-item questionnaire of school resilience in emergencies and disasters is valid and reliable, that can be used to evaluate school resilience. On the other hand, the questionnaire on assessment of school resilience in disasters enables intervention to improve its capacity.
The present study aims to introduce the linear sampling method for cavity/inclusion detection in a two-dimensional Laplace problem by measuring data on the boundary. This method is categorized as a qualitative approach to image the geometrical features of unknown targets. There has been no specific attempt to apply this method to the identification of cavities/inclusions in the Laplace equation although it has been used in the context of inverse problems such as acoustics, electromagnetism and elastostatics. Therefore, the implementation of the linear sampling method, coupled with the finite element method, is emphasized in this study. A set of numerical simulations on two-dimensional problems is presented to highlight many effective features of the proposed qualitative identification method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.