The aim of this study was to determine the effect of the induced stress and restraint provided by the underlying bone on the frequency-dependent storage and loss stiffness (for bone restraint) or modulus (for induced stress) of articular cartilage, which characterise its viscoelasticity. Dynamic mechanical analysis has been used to determine the frequency-dependent viscoelastic properties of bovine femoral and humeral head articular cartilage. A sinusoidal load was applied to the specimens and out-of-phase displacement response was measured to determine the phase angle, the storage and loss stiffness or modulus. As induced stress increased, the storage modulus significantly increased (p < 0.05). The phase angle decreased significantly (p < 0.05) as the induced stress increased; reducing from 13.1° to 3.5°. The median storage stiffness ranged from 548 N/mm to 707 N/mm for cartilage tested on-bone and 544 N/mm to 732 N/mm for cartilage tested off-bone. On-bone articular cartilage loss stiffness was frequency independent (p > 0.05); however, off-bone, articular cartilage loss stiffness demonstrated a logarithmic frequency-dependency (p < 0.05). In conclusion, the frequency-dependent trends of storage and loss moduli of articular cartilage are dependent on the induced stress, while the restraint provided by the underlying bone removes the frequency-dependency of the loss stiffness.
The increase in crack length with loading frequency indicated that, increased loading frequency can result in cartilage becoming damaged. The results of this study have implications in the early stages of osteoarthritis.
The aim of this study was to determine the variation in viscoelastic properties of femoral head bovine articular cartilage, on-bone, over five orders of magnitude of loading frequency. These frequencies ranged from below, up to and above healthy gait-relevant frequencies, using<1, 1–5 and 10 Hz, respectively. Dynamic mechanical analysis was used to measure storage and loss stiffness. A maximum compressive force of 36 N was applied through a chamfered-end, 5.2-mm-diameter, indenter. This induced a maximum nominal stress of 1.7 MPa. The ratio of storage to loss stiffness increased from near parity (2.5) at low frequencies to 11.4 at 10 Hz. This was the result of a significant logarithmic increase (p < 0.05) in storage stiffness with frequency, from 367 N/mm (0.001 Hz) up to 1460 N/mm (10 Hz). In contrast, the loss stiffness remained approximately constant. In conclusion, viscoelastic properties of articular cartilage measured at frequencies below those of gait activities are poor predictors of its relevant dynamic mechanical behaviour.
Cracks can occur in the articular cartilage surface due to the mechanical loading of the synovial joint, trauma or wear and tear. However, the propagation of such cracks under different frequencies of loading is unknown. The objective of this study was to determine the effect of frequency of loading on the growth of a pre-existing crack in cartilage specimens subjected to cyclic tensile strain. A 2.26 mm crack was introduced into cartilage specimens and crack growth was achieved by applying a sinusoidally varying tensile strain at frequencies of 1, 10 and 100 Hz (i.e. corresponding to normal, above normal and up to rapid heel-strike rise times, respectively). These frequencies were applied with a strain of between 10–20% and the crack length was measured at 0, 20, 50, 100, 500, 1000, 5000 and 10,000 cycles of strain. Crack growth increased with increasing number of cycles. The maximum crack growth was 0.6 ± 0.3 (mean ± standard deviation), 0.8 ± 0.2 and 1.1 ± 0.4 mm at frequencies of 1, 10 and 100 Hz, respectively following 10,000 cycles. Mean crack growth were 0.3 ± 0.2 and 0.4 ± 0.2 at frequencies of 1 and 10 Hz, respectively. However, this value increased up to 0.6 ± 0.4 mm at a frequency of 100 Hz. This study demonstrates that crack growth was greater at higher frequencies. The findings of this study may have implications in the early onset of osteoarthritis. This is because rapid heel-strike rise times have been implicated in the early onset of osteoarthritis.
BackgroundThe objective of this study was to determine the influence of loading frequency on the failure of articular cartilage-on-bone specimens under three-point bending.MethodsIn this study, cyclic three-point bending was used to introduce failure into cartilage-on-bone specimens at varying loading frequencies. Sinusiodally varying maximum compressive loads in the range 40–130 N were applied to beam-shaped cartilage-on-bone specimens at frequencies of 1, 10, 50 and 100 Hz.ResultsThe number of cycles to failure decreased when loading frequency increased from normal and above gait (1 and 10 Hz) to impulsive loading frequencies (50 and 100 Hz). It was found that 67 and 27% of the specimens reached run-out at loading of 10,000 cycles at frequencies of 1 and 10 Hz, respectively. However, 0% of the specimens reached run-out at loading frequencies of 50 and 100 Hz.ConclusionThe results indicate that increasing the loading frequency reduces the ability of specimens to resist fracture during bending. The findings underline the importance of the loading frequency concerning the failure of articular cartilage-on-bone and it may have implications in the early onset of osteoarthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.