Background Even though the widespread of nanoalumina and their benefits in all fields, its potential impacts on male reproductive system have limited information. Objective The present study was conducted to investigate the testicular dysfunction of nanoalumina and the protective role of pumpkin seed oil (PSO) against potential adverse impacts induced by alumina nanoparticles (Al2O3-NPs) in male rat. Methodology Al2O3-NPs were administered to the rat orally at a dose of 70 mg/kg body weight once a day for 28 successive days, while pumpkin seed oil was administered to the rat orally at 4 mL/kg b w before administration of Al2O3-NPs, once a day for 28 successive days. After the administration period, sperm concentration, motility, morphology, and DNA damage, as biomarkers of reproductive toxic effects, were evaluated using sperm analysis and comet assays, and histopathological examination of testis was performed. In addition, level of the serum testosterone hormones were estimated, and the levels of oxidative stress biomarkers that take part in the reproductive pathologies such as catalase, glutathione, and malondialdehyde were estimated. Results The present results revealed that Al2O3-NPs induced DNA damage in testicular cells, marked histopathological alterations, and caused a significant elevation in MDA in testicular tissue. There was a significant decline in GSH and CAT activities. Furthermore, there was a significant decline in serum testosterone level in the testicular tissue of Al2O3-NP-administered rats. In contrast, pumpkin seed oil co-administration alleviated DNA damage and improved the histopathological alterations in the testicular tissues. Moreover, pumpkin seed oil co-administration significantly reduced MDA and improved the antioxidant defenses in testicular tissue. Conclusion The current study concluded that Al2O3-NPs caused testicular dysfunction by generating oxidative injury. Otherwise, PSO co-administration successfully attenuated the adverse impacts of Al2O3-NPs via suppression of oxidative stress and apoptosis as well as enhancement of the antioxidant defense system.
The recent increase in the global incidence of dengue fever resulted in over 2.7 million cases in Latin America and many cases in Southeast Asia and has warranted the development and application of early warning systems (EWS) for futuristic outbreak prediction. EWS pertaining to dengue outbreaks is imperative; given the fact that dengue is linked to environmental factors owing to its dominance in the tropics. Prediction is an integral part of EWS, which is dependent on several factors, in particular, climate, geography, and environmental factors. In this study, we explore the role of increased susceptibility to a DENV serotype and climate variability in developing novel predictive models by analyzing RT-PCR and DENV-IgM confirmed cases in Singapore and Honduras, which reported high dengue incidence in 2019 and 2020, respectively. A random-sampling-based susceptible-infected-removed (SIR) model was used to obtain estimates of the susceptible fraction for modeling the dengue epidemic, in addition to the Bayesian Markov Chain Monte Carlo (MCMC) technique that was used to fit the model to Singapore and Honduras case report data from 2012 to 2020. Regression techniques were used to implement climate variability in two methods: a climate-based model, based on individual climate variables, and a seasonal model, based on trigonometrically varying transmission rates. The seasonal model accounted for 98.5% and 92.8% of the variance in case count in the 2020 Singapore and 2019 Honduras outbreaks, respectively. The climate model accounted for 75.3% and 68.3% of the variance in Singapore and Honduras outbreaks respectively, besides accounting for 75.4% of the variance in the major 2013 Singapore outbreak, 71.5% of the variance in the 2019 Singapore outbreak, and over 70% of the variance in 2015 and 2016 Honduras outbreaks. The seasonal model accounted for 14.2% and 83.1% of the variance in the 2013 and 2019 Singapore outbreaks, respectively, in addition to 91% and 59.5% of the variance in the 2015 and 2016 Honduras outbreaks, respectively. Autocorrelation lag tests showed that the climate model exhibited better prediction dynamics for Singapore outbreaks during the dry season from May to August and in the rainy season from June to October in Honduras. After incorporation of susceptible fractions, the seasonal model exhibited higher accuracy in predicting outbreaks of higher case magnitude, including those of the 2019–2020 dengue epidemic, in comparison to the climate model, which was more accurate in outbreaks of smaller magnitude. Such modeling studies could be further performed in various outbreaks, such as the ongoing COVID-19 pandemic to understand the outbreak dynamics and predict the occurrence of future outbreaks.
Curcuma species are widely used as a food additive and also in various medicinal purposes. The plant is a rich source of essential oil and is predominantly extracted from the rhizomes. On the other hand, the leaves of the plants are usually considered as an agrowaste. The valorization of these Curcuma leaf wastes into essential oils is becoming accepted globally. In the present study, we aim to extract essential oils from the leaves of Curcuma longa (LEO), C. aromatica (REO), and C. anguistifolia (NEO). The chemical composition of these essential oils was analyzed by GC-MS. Free radical scavenging properties were evaluated against the radical sources, including DPPH, ABTS, and hydrogen peroxide. The antibacterial activity was assessed by the disc diffusion method and Minimum inhibitory concentration analysis against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica) bacteria. Results identified the compounds α-phellandrene, 2-carene, and eucalyptol as predominant in LEO. The REO was predominated by camphor, 2-bornanone, and curdione. The main components detected in NEO were eucalyptol, curzerenone, α-lemenone, longiverbenone, and α-curcumene. Antioxidant properties were higher in the LEO with IC50 values of 8.62 ± 0.18, 9.21 ± 0.29, and 4.35 ± 0.16 µg/mL, against DPPH, ABTS, and hydrogen peroxide radicals. The cytotoxic activity was also evident against breast cancer cell lines MCF-7 and MDA-MB-231 cells; the LEO was found to be the most active against these two cell lines (IC50 values of 40.74 ± 2.19 and 45.17 ± 2.36 µg/mL). Likewise, the results indicated a higher antibacterial activity for Curcuma longa essential oil with respective IC50 values (20.6 ± 0.3, 22.2 ± 0.3, 20.4 ± 0.2, and 17.6 ± 0.2 mm). Hence, the present study confirms the possible utility of leaf agrowastes of different Curcuma spp. as a possible source of essential oils with pharmacological potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.