Due to pluripotency of embryonic stem (ES) cells, these cells are an invaluable in vitro model that investigates the influence of different physical and chemical cues on differentiation/development pathway of specialized cells. We sought the effect of roughness and alignment, as topomorpholocial properties of scaffolds on differentiation of green fluorescent protein-expressing ES (GFP-ES) cells into three germ layers derivates simultaneously. Furthermore, the effect of Matrigel as a natural extracellular matrix in combination with poly(lactic-co-glycolic acid) (PLGA) nanofibrous scaffolds on differentiation of mouse ES cells has been investigated. The PLGA nanofibrous scaffolds with different height and distribution of roughness and alignments were fabricated. Then, the different cell differentiation fats of GFP-ES cells plated on PLGA and PLGA/Matrigel scaffolds were analyzed by gene expression profiling. The findings demonstrated that distinct ranges of roughness, height, and distribution can support/promote a specific cell differentiation fate on scaffolds. Coating of scaffolds with Matrigel has a synergistic effect in differentiation of mesoderm-derived cells and germ cells from ES cells, whereas it inhibits the derivation of endodermal cell lineages. It was concluded that the topomorpholocial cues such as roughness and alignment should be considered in addition to other scaffolds properties to design an efficient electrospun scaffold for specific tissue engineering.
Human endometrial stem cells (hEnSCs) are a new source of adult multipotent stem cells with the ability of differentiation into many cell lineages. Many stem cell sources are desirable for differentiation into Schwann cells. Schwann-like cells derived from hEnSCs may be one of the ideal alternative cell sources for Schwann cell generation. In this study, for differentiation of hEnSCs into Schwann cells, hEnSCs were induced with RA/FSK/PDGF-AA/HRG as an induction medium for 14 days. The cells were cultured in a tissue culture plate (TCP) and fibrin gel matrix. The viability of cultured cells in the fibrin gel and TCP was analyzed with 3-[4,5-dimethyl-2-thia-zolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay for 7 days. The attachment of cells was analyzed with SEM and DAPI staining. The expression of S100 and P75 as Schwann cell markers was evaluated by immunocytochemistry and quantitative real-time PCR (RT-PCR). The evaluation of the MTT assay and gene expression showed that the survival rate and differentiation of hEnSCs into Schwann cells in the fibrin gel were better than those in the TCP group. These results suggest that human EnSCs can be differentiated into Schwann cells in the fibrin gel better than in the TCP, and the fibrin gel might provide a suitable three-dimensional (3D) scaffold for clinical applications for cell therapy of the nervous system.
The significant consequences of spinal cord injury (SCI) include sensory and motor disability resulting from the death of neuronal cells and axon degeneration. In this respect, overcoming the consequences of SCI including the recovery of sensory and motor functions is considered to be a difficult tasks that requires attention to multiple aspects of treatment. The breakthrough in tissue engineering through the integration of biomaterial scaffolds and stem cells has brought a new hope for the treatment of SCI. In the present study, human endometrial stem cells (hEnSCs) were cultured with human Schwann cells (hSC) in transwells, their differentiation into nerve‐like cells was confirmed by quantitative real‐time reverse transcription polymerase chain reaction (qRT‐PCR) and immunocytochemistry techniques. The differentiated cells (co‐hEnSC) were then seeded on the poly ε‐caprolactone (PCL)/gelatin scaffolds. The SEM images displayed the favorable seeding and survival of the cells on the scaffolds. The seeded scaffolds were then transplanted into hemisected SCI rats. The growth of neuronal cells was confirmed with immunohistochemical study using NF‐H as a neuronal marker. Finally, the Basso, Beattie, and Bresnahan (BBB) test confirmed the recovery of sensory and motor functions. The results suggested that combination therapy using the differentiated hEnSC seeded on PCL/gelatin scaffolds has the potential to heal the injured spinal cord and to limit the secondary damage.
Parkinson's disease (PD) is a progressive neurological disorder characterized by a large number of motor and non-motor features and is known as the second most common neurodegenerative disorder after Alzheimer's disease. The hallmark pathology of PD is the damage and death of dopamine-producing neurons in the substantia-nigra of midbrain. Intrastriatal transplants of fetal mesencephalon derived DAergic neurons have provided proof-of-principle for the cell replacement strategy and have demonstrated reinnervation of the denervated striatum. However, ethical, technical, and practical limitations of deploying fetal DAergic neurons as the source for cell therapy in PD have ceased the spread of this procedure into clinical practice. Embryonic stem (ES) cells have emerged as a therapeutic alternative that can proliferate extensively and generate dopamine-producing neurons. To this extent and to surmount the obstacles related to embryonic neural cells, many investigations have focused on using pluripotent stem cells for the derivation of DAergic neurons. In the present study, a mouse embryonic stem (mES) R1 cell line was generated which could stably co-express Nurr1 (an essential transcription factor in DAergic neuron development) and GPX-1 (a neuroprotective enzyme against oxidative stress). The Nurr1/GPX-1-expressing ES cells (Nurr1/GPX-1-ES) were differentiated into DAergic-like cells via a three-dimensional culture environment consisting of Poly-ε-Caprolactone (PCL) nanofibrous scaffolds embedded by Matrigel (Mtg) in the presence of specific signaling molecules. DAergic neuron-specific genes were highly expressed in ES-derived DAergic neurons cultured and differentiated on PCL/Mtg scaffolds. Reverse-phase HPLC confirmed that the Nurr1/GPX-1-ES-cells differentiated on PCL/Mtg electrospun scaffolds could efficiently and exclusively secrete dopamine in response to stimulus. In conclusion, our results demonstrated that PCL/Matrigel nanofibrous scaffolds could efficiently support and promote the generation of functional DAergic-like cells from Nurr1/GPX-1-ES cells. The results of this study may have an impact on future tissue engineering for cell therapy of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.