A novel biodegradable electroactive polyurethane containing aniline pentamer (AP) was blended with polycaprolactone (PCL). The prepared blend (PB) and PCL were further fabricated in to scaffolds using a mixture of poly(ethylene glycol) and salt particles in a double porogen particulate leaching and compression molding methodology. Scaffolds held open and interconnected pores having pore size ranging from several μm to 150 µm. PB scaffolds had compression modulus and strength of 4.1 and 1.3 MPa, respectively. The conductivity of the scaffold was measured as 10(-5) ± 0.09 S .cm(-1) and preserved for at least 100 h post fabrication. Scaffolds supported neonatal cardiomyocytes adhesion and growth with PB showing more extensive effect on the expression of the cardiac genes involved in muscle contraction and relaxation (troponin-T) and cytoskeleton alignment (actinin-4). Our results highlight the potential of incorporation of AP as an electroactive moiety for induction of cardiomyocyte proliferation and repair of damaged heart tissue.
In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples.
Finally these results suggest that this biomimetic model with fibrin may provide a vastly applicable 3D culture system to study the effect of anti-cancer drugs such as atrovastatin on tumor malignancy in vitro and in vivo and atorvastatin could be used as anticancer agent for glioblastoma treatment.
Various compositions and synthesis methods of biodegradable iron-based alloys have been studied aiming for the use of temporary medical implants. However, none is focused on nano-structured alloy and on adding antibacterial property to the alloy. In this study, new Fe-30Mn-(1-3)Ag alloys were synthesized by means of mechanical alloying and assessed for their microstructure, mechanical properties, corrosion rate, antibacterial activity and cytotoxicity. Results showed that the alloy with 3 wt% Ag content displayed the highest relative density, shear strength, micro hardness and corrosion rate. However, optimum cytotoxicity and the antibacterial activity were reached by the alloy with 1 wt% Ag content. The compositional and processing effects of the alloys' properties are further discussed in this work.
Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the field of regenerative medicine. It's suggested that the predominant mechanism of MSCs in tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue repair is initially based on the differentiation ability of these cells; however now it has been revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic factors, survival signals and the release of extracellular vesicles (EVs) such as exosome. Also, the paracrine activity of EVs could mediate the cellular communication to induce cell-differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be critical in the physiological function of these cells. This review provides an overview of MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free therapy strategies that might prevail over the obstacles and risks associated with the use of native or engineered stem cells. EVs are very stable; they can pass the biological barriers without rejection and can shuttle bioactive molecules from one cell to another, causing the exchange of genetic information and reprogramming of the recipient cells. Moreover, extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.