Finally these results suggest that this biomimetic model with fibrin may provide a vastly applicable 3D culture system to study the effect of anti-cancer drugs such as atrovastatin on tumor malignancy in vitro and in vivo and atorvastatin could be used as anticancer agent for glioblastoma treatment.
Metformin could be considered as an alternative therapeutic agent for SCI, as it potentially attenuates neuroinflammation, sensory and locomotor complications of cord injury.
Human endometrial and bone marrow-derived mesenchymal stem cells can be differentiated into a number of cell lineages. Mesenchymal stem cells (MSCs) are potential candidates for cellular therapy. The differentiation of human bone marrow MSCs (hBM-MSCs) and endometrial stem cells (hEnSCs) into motor neuron-like cells has been rarely investigated previously; however, the comparison between these stem cells when they are differentiated into motor neuron-like cell is yet to be studied. The aim of this study was therefore to investigate and compare the capability of hBM-MSCs and hEnSCs cultured on tissue culture polystyrene (TCP) and poly ε-caprolactone (PCL) nanofibrous scaffold to differentiate into motor neuron-like cells in the presence of neural inductive molecules. Engineered hBM-MSCs and hEnSCs seeded on PCL nanofibrous scaffold were differentiated into beta-tubulin III, islet-1, Neurofilament-H (NF-H), HB9, Pax6, and choactase-positive motor neurons by immunostaining and real-time PCR, in response to the signaling molecules. The data obtained from PCR and immunostaining showed that the expression of motor neuron markers of both hBM-MSCs and hEnSCs differentiated cells on PCL scaffold are significantly higher than that of the control group. The expression of these markers in hEnSCs differentiated cells was higher than that in hBM-MSCs. However, this difference was not statistically significant. In conclusion, differentiated hBM-MSCs and hEnSCs on PCL can provide a suitable three-dimensional situation for neuronal survival and outgrowth for regeneration of the central nervous system. Both cells may be potential candidates for cellular therapy in motor neuron disorders. However, differentiation of hEnSCs into motor neuron-like cells was better than hBM-MSCs.
Human endometrium is a high-dynamic tissue that contains human endometrial stem cells (hEnSCs) which can be differentiated into a number of cell lineages. The differentiation of hEnSCs into many cell lineages such as osteoblast, adipocyte, and neural cells has been investigated previously. However, the differentiation of these stem cells into motor neuron-like cells has not been investigated yet. Different biochemical and topographical cues can affect the differentiation of stem cells into a specific cell. The aim of this study was to investigate the capability of hEnSCs to be differentiated into motor neuron-like cells under biochemical and topographical cues. The biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) electrospun nanofibrous scaffold was used as a topographical cue. Human EnSCs were cultured on the PLGA scaffold and tissue culture polystyrene (TCP), then differentiation of hEnSCs into motor neuron-like cells under induction media including retinoic acid (RA) and sonic hedgehog (Shh) were evaluated for 15 days. The proliferation rate of cells was assayed by using MTT assay. The morphology of cells was studied by scanning electron microscopy imaging, and the expression of motor neuron-specific markers by real-time PCR and immunocytochemistry. Results showed that survival and differentiation of hEnSCs into motor neuron-like cells on the PLGA scaffold were better than those on the TCP group. Taken together, the results suggest that differentiated hEnSCs on PLGA can provide a suitable, three-dimensional situation for neuronal survival and outgrowth for regeneration of the central nervous system, and these cells may be a potential candidate in cellular therapy for motor neuron diseases.
Objective/background: In patients with spinal cord injury (SCI), SCI causes psychosocial complications that vary based on culture, conditions, and the amenities of each community. Health planners and social services should have full knowledge of these issues in order to plan schedules that address them. In this study, we aimed to understand the psychosocial problems of persons with SCI in Iran and to explore the requirements for minimizing these difficulties. Design: This was a descriptive cross-sectional study. Setting: Brain and Spinal Cord Injury Research (BASIR) Center, Tehran University of Medical Sciences, Tehran, Iran. Participants: One hundred nineteen persons with SCI referred to BASIR clinic to receive outpatient rehabilitation. Methods: In this study, trained interviewers administered a questionnaire to the participants. The questionnaire consisted of socio-demographic variables and psychosocial questions about finances, employment, housing, education, and social communication problems. Results: Psychosocial problems for persons with SCI are mainly associated with financial hardship due to unemployment and the high cost of living, followed by difficulties with transportation, house modification, education, marriage, social communication, sports, and entertainment. Psychological problems include sadness, depression, irritability/anger, suicidal thoughts, and a lack of self-confidence. The levels of the aforementioned problems differ with respect to sex. Conclusion: Persons suffering from SCI can face some serious psychosocial problems that may vary according to sex. For example, transportation difficulties can lead to problems such as unsociability. After recognizing these problems, the next step would be providing services to facilitate a productive lifestyle, enhancing social communication and psychological health, and ultimately creating a higher quality of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.