The most prominent character of a new type of antibacterial urological catheters is the zebra-stripe pattern of a silver film, which is plated electroless on their interior wall and capped by a very thin semipermeable layer of parylene. This design effectively controls the release rate of Ag(+) ions in artificial urine, which has been measured as function of time with optical emission spectroscopy. By evaluating the minimum inhibitory concentration against certain strains of bacteria with solutions of AgNO3 of known concentration with the method of optical density and applying this analysis to the silver-eluting catheters, it was shown that this moderation prolongs the period of their application significantly. But to act as antibacterial agent in chlorine-containing solutions, as in urine, the presence of urea is required to avoid precipitation of AgCl and to meet or even exceed the minimum inhibitory concentration of Ag(+). The quality of the silver depot layer was further determined by the deposition rate and its morphology, which revealed that the film consisted of grains with a mean size of 150 nm.
To allow medical application of an artificial bladder made of biocompatible polyurethane, a long-term stable antibacterial coating is required. Alone, the artificial bladder exhibits no defense against microorganisms. Silver coating provides long-term antibacterial protection by the continuous release of silver ions into aqueous solutions. To control and to prolong the rate of silver ion release, the deposited silver film has to be protected by an inert film of biocompatible polyparylene by means of chemical vapor deposition. In this study, an antibacterial artificial bladder surface was developed by the formation of a sandwich structure consisting of silver and a biocompatible polymer (polyparylene) as a diffusion barrier. Specifically, this study analyzed the correlation between polyparylene thickness and silver release to determine optimal concentrations to combat common bacteria in vitro. The release of silver from sandwich structures was investigated in vitro by testing different thicknesses of polyparylene (0, 190, 540, and 1000 nm) as a diffusion barrier. The best result was demonstrated with a thickness of 190 nm of polyparylene, which yielded a silver dispense rate of 650 pg/(cm(2)⋅min), which would yield bacteriozidal concentrations above 30 μg/l in the bladder volume. The authors confirmed the antibacterial effect in vitro against common urinary tract infection pathogens, namely, Escherichia coli and Staphylococcus cohnii. Inhibition of bacterial growth could be detected within 8 h. A diffusion assay with spherical silver spots showed concentric zones free of bacterial growth. Our results suggest the possible utility of silver-polyparylene coatings as antibacterial agents.
Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters. Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly(p-xylylene). This top layer is mainly designed to release a controlled amount of Ag+ ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens’ reagens, the cap layer is deposited by using chemical vapor deposition. Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin’s pot and the principle of Le Chatelier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.