Abstract-Breast cancer remains the most common type of cancer and the leading cause of cancer-induced mortality among women with 2.4 million new cases diagnosed and 523, 000 deaths per year. Historically, a diagnosis has been initially performed using clinical screening followed by histopathological analysis. Automated classification of cancers using histopathological images is a chciteallenging task of accurate detection of tumor sub-types. This process could be facilitated by machine learning approaches, which may be more reliable and economical compared to conventional methods. To prove this principle, we applied fine-tuned pre-trained deep neural networks. To test the approach we first classify different cancer types using 6, 402 tissue micro-arrays (TMAs) training samples. Our framework accurately detected on average 99.8% of the four cancer types including breast, bladder, lung and lymphoma using the ResNet V1 50 pre-trained model. Then, for classification of breast cancer sub-types this approach was applied to 7, 909 images from the BreakHis database. In the next step, ResNet V1 152 classified benign and malignant breast cancers with an accuracy of 98.7%. In addition, ResNet V1 50 and ResNet V1 152 categorized either benign-(adenosis, fibroadenoma, phyllodes tumor, and tubular adenoma) or malignant-(ductal carcinoma, lobular carcinoma, mucinous carcinoma, and papillary carcinoma) sub-types with 94.8% and 96.4% accuracy, respectively. The confusion matrices revealed high sensitivity values of 1, 0.995 and 0.993 for cancer types, as well as malignantand benign sub-types respectively. The areas under the curve (AUC) scores were 0.996, 0.973 and 0.996 for cancer types, malignant and benign sub-types, respectively. Overall, our results show negligible false negative (on average 3.7 samples) and false positive (on average 2 samples) results among different models. Availability: Source codes, guidelines and data sets are temporarily available on google drive upon request before moving to a permanent GitHub repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.