Solution processed organic field effect transistors can become ubiquitous in flexible optoelectronics. While progress in material and device design has been astonishing, low environmental and operational stabilities remain longstanding problems obstructing their immediate deployment in real world applications. Here, we introduce a strategy to identify the most probable and severe degradation pathways in organic transistors and then implement a method to eliminate the main sources of instabilities. Real time monitoring of the energetic distribution and transformation of electronic trap states during device operation, in conjunction with simulations, revealed the nature of traps responsible for performance degradation. With this information, we designed the most efficient encapsulation strategy for each device type, which resulted in fabrication of high performance, environmentally and operationally stable small molecule and polymeric transistors with consistent mobility and unparalleled threshold voltage shifts as low as 0.1 V under the application of high bias stress in air.
Conjugated polymers have gained momentum as serious contenders for next‐generation flexible electronics, but their susceptibility to water represents a major problem. Atmospheric water is ubiquitous and its inadvertent diffusion into polymeric devices generates charge carrier traps, reducing their performance and stability. A good understanding of the physical processes associated with the presence of water is therefore necessary in order to be able to suppress the related trapping events and enable stable, high‐performance devices. Here, evidence is shown that water introduces traps in the bandgap of organic semiconductors and the impact of these traps on the electrical properties of polymer organic field‐effect transistors (OFETs) based on indacenodithiophene‐co‐benzothiadiazole (IDT‐BT) is investigated. Monitoring device parameters and the trap density of states (t‐DOS) during moisture extrication reveals the existence of two types of water‐related traps: shallow traps originating from water inhabiting the voids of the polymer film and deeper traps arising from chemisorbed water present at the dielectric/polymer interface. A trap passivation method based on flame‐annealing is introduced to eliminate the interfacial traps. As a result, stable OFETs, with threshold voltage shifts less than ΔVth = −0.3 V and constant mobilities (<10% variation) after three months of storage, are fabricated.
Solution‐processable organic semiconductors can serve as the basis for new products including rollable displays, tattoo‐like smart bandages for real‐time health monitoring, and conformable electronics integrated into clothing or even implanted in the human body. For such exciting commercial applications to become a reality, good device performance and uniformity over large areas are necessary. The design of new materials has progressed at an astonishing pace, but accessing their intrinsic, efficient electrical properties in large‐area flexible device arrays is difficult. The development of protocols that allow integration with industrial‐scale processing for high‐throughput manufacturing, without the need to compromise on performance, is the key for transitioning these materials to real‐life applications. In this work, large‐area arrays of organic thin‐film transistors obtained by spray‐coating the high‐mobility polymer indacenodithiophene‐co‐benzothiadiazole (IDTBT) are demonstrated. A maximum charge carrier mobility of 2.3 cm2 V−1 s−1, with a very narrow performance distribution, is obtained over surface areas of 10 cm × 10 cm. The devices retain their electrical properties when bent multiple times and at different curvatures. In addition, large arrays of highly sensitive (0.25% change in mobility for 1% humidity variation), reusable, near‐identical humidity sensors are produced in a one‐step fabrication and calibrated from 0% to 94% relative humidity.
Radiation therapy is one of the most prevalent procedures for cancer treatment, but the risks of malignancies induced by peripheral beam in healthy tissues surrounding the target is high. Therefore, being able to accurately measure the exposure dose is a critical aspect of patient care. Here a radiation detector based on an organic field‐effect transistor (RAD‐OFET) is introduced, an in vivo dosimeter that can be placed directly on a patient's skin to validate in real time the dose being delivered and ensure that for nearby regions an acceptable level of low dose is being received. This device reduces the errors faced by current technologies in approximating the dose profile in a patient's body, is sensitive for doses relevant to radiation treatment procedures, and robust when incorporated into conformal large‐area electronics. A model is proposed to describe the operation of RAD‐OFETs, based on the interplay between charge photogeneration and trapping.
Access to the dynamics of trap annihilation/generation resulting from isomer rearrangement identifies the performance-limiting processes in organic thin-film transistors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.