Organic semiconductors have sparked interest as flexible, solution processable, and chemically tunable electronic materials. Improvements in charge carrier mobility put organic semiconductors in a competitive position for incorporation in a variety of (opto-)electronic applications. One example is the organic field-effect transistor (OFET), which is the fundamental building block of many applications based on organic semiconductors. While the semiconductor performance improvements opened up the possibilities for applying organic materials as active components in fast switching electrical devices, the ability to make good electrical contact hinders further development of deployable electronics. Additionally, inefficient contacts represent serious bottlenecks in identifying new electronic materials by inhibiting access to their intrinsic properties or providing misleading information. Recent work focused on the relationships of contact resistance with device architecture, applied voltage, metal and dielectric interfaces, has led to a steady reduction in contact resistance in OFETs. While impressive progress was made, contact resistance is still above the limits necessary to drive devices at the speed required for many active electronic components. Here, the origins of contact resistance and recent improvement in organic transistors are presented, with emphasis on the electric field and geometric considerations of charge injection in OFETs.semiconductors with superior intrinsic charge transport properties, there is a stringent need to improve the device properties in order to allow organic devices to fulfill their technological prospectives. In the organic semiconductor community, contact resistance (R C ) has come under increased scrutiny as it is apparent that the final device performance is often domi nated by carrier injection, rather than the transport through the semiconductor layer. Contact resistance can impact OFET development in multiple ways. First, if not accounted for, a high contact resistance may lead to inaccurate extraction of the device parameters. Second, any inaccuracies in parameter extraction can have significant consequences on material development, from generating incorrect structure-property relationships to discarding organic semiconductors whose efficient intrinsic electrical properties have been masked by inefficient contacts. Beyond OFET and semiconductor characterization, analog, low power, and high frequency applications require a greater level of device parameter control than has been obtained in typical DC, high-voltage OFETs. For analog applications, e.g., integration of conditioning circuits such as local sense amps for distributed flexible sensor arrays, nonlinearity of the transistor response inhibits proper functioning and limits applicability of common models used to design circuitry. Low power device development for novel materials are hindered by the high voltage turn-on and current suppression in devices with large R C . Considering high-frequency applications, Klauk suggest...
Chemical versatility and compatibility with a vast array of processing techniques has led to the incorporation of organic semiconductors in various electronic and opto-electronic devices. One such device is the organic field-effect transistor (OFET). In this tutorial, we describe the structure, operation, and characterization of OFETs. Following a short historical perspective, we introduce the architectures possible for OFETs and then describe the device physics and the methods for extracting relevant device parameters. We then provide a brief overview of the myriad organic semiconductors and deposition methods that were adopted for OFETs in the past decades. Non-ideal device characteristics, including contact resistance, are then discussed along with their effects on electrical performance and on the accuracy of extracting device parameters. Finally, we highlight several measurements involving OFETs that allow access to fundamental properties of organic semiconductors and the mechanism of charge transport in these materials.
For the first time, the mixed phase is quantified within a polymer solar cell and correlated to CT state separation and charge extraction efficiency. A causal relationship is revealed that a narrow mixed interphase between pure donor and pure acceptor domains is a key driver in device efficiency.
Conjugated polymers have gained momentum as serious contenders for next‐generation flexible electronics, but their susceptibility to water represents a major problem. Atmospheric water is ubiquitous and its inadvertent diffusion into polymeric devices generates charge carrier traps, reducing their performance and stability. A good understanding of the physical processes associated with the presence of water is therefore necessary in order to be able to suppress the related trapping events and enable stable, high‐performance devices. Here, evidence is shown that water introduces traps in the bandgap of organic semiconductors and the impact of these traps on the electrical properties of polymer organic field‐effect transistors (OFETs) based on indacenodithiophene‐co‐benzothiadiazole (IDT‐BT) is investigated. Monitoring device parameters and the trap density of states (t‐DOS) during moisture extrication reveals the existence of two types of water‐related traps: shallow traps originating from water inhabiting the voids of the polymer film and deeper traps arising from chemisorbed water present at the dielectric/polymer interface. A trap passivation method based on flame‐annealing is introduced to eliminate the interfacial traps. As a result, stable OFETs, with threshold voltage shifts less than ΔVth = −0.3 V and constant mobilities (<10% variation) after three months of storage, are fabricated.
Solution‐processable organic semiconductors can serve as the basis for new products including rollable displays, tattoo‐like smart bandages for real‐time health monitoring, and conformable electronics integrated into clothing or even implanted in the human body. For such exciting commercial applications to become a reality, good device performance and uniformity over large areas are necessary. The design of new materials has progressed at an astonishing pace, but accessing their intrinsic, efficient electrical properties in large‐area flexible device arrays is difficult. The development of protocols that allow integration with industrial‐scale processing for high‐throughput manufacturing, without the need to compromise on performance, is the key for transitioning these materials to real‐life applications. In this work, large‐area arrays of organic thin‐film transistors obtained by spray‐coating the high‐mobility polymer indacenodithiophene‐co‐benzothiadiazole (IDTBT) are demonstrated. A maximum charge carrier mobility of 2.3 cm2 V−1 s−1, with a very narrow performance distribution, is obtained over surface areas of 10 cm × 10 cm. The devices retain their electrical properties when bent multiple times and at different curvatures. In addition, large arrays of highly sensitive (0.25% change in mobility for 1% humidity variation), reusable, near‐identical humidity sensors are produced in a one‐step fabrication and calibrated from 0% to 94% relative humidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.