This paper presents a theoretical study using the full potential linearized augmented plane wave approach (FP-LAPW) based on the density functional theory (DFT) to predict the structural and electronic properties of RbCdF3 and TlCdF3 compounds. The exchange-correlation potential is treated by the local density approximation (LDA), generalized gradient approximation (GGA) and modified Beck-Johnson exchange potential (mBJ). The calculated structural properties such as the equilibrium lattice parameter, the bulk modulus and its pressure derivative are in good agreement with the available data. The obtained results for the band structure and the density of states (DOS) show that the RbCdF3 (TlCdF3) compound have an indirect band gap of 6.77 and 3.07 eV (5.70 and 3.66 eV) with TB-mBJ and WC method respectively. From the electronic transition from valence conduction bands to conduction bands the optical properties were calculated. The elastic constants were calculated using the energy deformation relationship, from these constants the other mechanical properties such as bulk modulus, shear modulus, Young modulus and Poisson ratio were calculate and comment. Lastly, the elastic anisotropy was discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.