The development of an improved new IBM method is proposed in the present article. This method roots in efficient proposals developed for the simulation of
In the present study, a discrete forcing Immersed Boundary Method (IBM) is proposed for the numerical simulation of high-speed flow problems including heat exchange. The flow field is governed by the compressible Navier-Stokes equations, which are resolved by using the open source library OpenFOAM. The numerical solver is modified to include source terms in the momentum equation and in the energy equation, which account for the presence of the immersed body. The method is validated on some benchmark test cases dealing with forced convection problems and moving immersed bodies. The results obtained are in very good agreement with data provided in the literature. The method is further assessed by investigating three-dimensional high Mach flows around a heated sphere with different wall temperature. Even for this more complex test case, the method provides an accurate representation of both thermal and velocity fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.