Childhood obesity has increased worldwide, and many clinical and public interventions have attempted to reduce morbidity. We aimed to determine the metabolomic signatures associated with weight control interventions in children with obesity. Forty children from the “Intervention for Children and Adolescent Obesity via Activity and Nutrition (ICAAN)” cohort were selected according to intervention responses. Based on changes in body mass index z-scores, 20 were responders and the remaining non-responders. Their serum metabolites were quantitatively analyzed using capillary electrophoresis time-of-flight mass spectrometry at baseline and after 6 and 18 months of intervention. After 18 months of intervention, the metabolite cluster changes in the responders and non-responders showed a difference on the heatmap, but significant metabolites were not clear. However, regardless of the responses, 13 and 49 metabolites were significant in the group of children with obesity intervention at 6 months and 18 months post-intervention compared to baseline. In addition, the top five metabolic pathways (D-glutamine and D-glutamate metabolism; arginine biosynthesis; alanine, aspartate, and glutamate metabolism; TCA cycle; valine, leucine, and isoleucine biosynthesis) including several amino acids in the metabolites of obese children after 18 months were significantly changed. Our study showed significantly different metabolomic profiles based on time post obesity-related intervention. Through this study, we can better understand and predict childhood obesity through metabolite analysis and monitoring.
Background: The current study aimed to screen for relationships and different potential metabolic biomarkers involved between metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) in adolescents. Methods: The study included 148 obese adolescents aged between 14 and 16. The study participants were divided into MUO and MHO groups based on the age-specific adolescent metabolic syndrome (MetS) criteria of the International Diabetes Federation. The current study was conducted to investigate the clinical and metabolic differences between the MHO and MUO groups. Multivariate analyses were conducted to investigate the metabolites as independent predictors for the odds ratio and the presence of the MetS. Results: There were significant differences in the three acylcarnitines, five amino acids, glutamine/glutamate ratio, three biogenic amines, two glycerophospholipids, and the triglyceride-glucose index between the MUO group and those in the MHO group. Moreover, several metabolites were associated with the prevalence of MUO. Additionally, several metabolites were inversely correlated with MHO in the MUO group. Conclusions: In this study, the biomarkers found in this study have the potential to reflect the clinical outcomes of the MUO group. These biomarkers will lead to a better understanding of MetS in obese adolescents.
Trimethylamine N-oxide (TMAO) and its precursors, including choline, betaine, and L-carnitine, are gut microbiota-related metabolites associated with the risk of obesity. We aimed (1) to comprehensively examine whether the changes in plasma TMAO and its precursors induced by lifestyle intervention are associated with the improvements in plasma metabolic parameters; and (2) to identify the fecal microbiome profiles and nutrient intakes associated with these metabolites and metabolic index. Data from 40 participants (obese children and adolescents) having the plasma metabolites data related to the changes in BMI z-scores after 6-month lifestyle intervention were analyzed. In this study, we observed that choline and the betaine-to-choline ratio (B/C) showed different patterns depending on the changes in BMI z-scores by the response to lifestyle intervention. During the 6 months, an increase in choline and a decrease in B/C were observed in non-responders. We also found that changes in choline and B/C were associated with the improvements in plasma lipid levels. Individuals who showed reduced choline or increased B/C from the baseline to 6 months had a significant decrease in LDL-cholesterol over 6 months compared to those with increased choline or decreased B/C, respectively. In addition, the increase in choline or decrease in B/C was associated with the increase in plasma triglycerides. The distribution of gut microbiota belonging to the Firmicutes, such as Clostridia, Clostridiales, Peptostreptococcaceae, Romboutsia, and Romboutsia timonensis was altered to be lower during the 6 months both as choline decreased and B/C increased. Moreover, the decrease in choline and the increase in B/C were associated with reduced fat intake and increased fiber intake after the 6-month intervention. Finally, lower abundance of Romboutsia showed the association with lower LDL-cholesterol and higher intake of fiber. In summary, we demonstrated that reduced choline and increased B/C by lifestyle intervention were associated with the improvements of LDL-cholesterol and triglycerides, low-fat and high-fiber intakes, and low abundance of Firmicutes. These indicate that changes to circulating choline and B/C could predict individuals’ changes in metabolic compositions in response to the lifestyle intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.