Germanium has long been considered a therapeutic agent with anticancer, antitumor, antiaging, antiviral and anti-inflammatory effects. Numerous clinical studies have explored the promising therapeutic effects of organic germanium on cancer, arthritis and senile osteoporosis. The immune activation property of organic germanium is considered the foundation of its various therapeutic effects. However, previous human clinical studies investigating immune activation with organic germanium compounds have certain limitations, as some studies did not strictly follow a randomized, double-blind, placebo-controlled design. To build a more clinically substantiated foundation for the mechanism underlying its immunostimulation, we structured by far the most rigorous clinical study to-date with a group of 130 human subjects to examine changes in immune profiles following germanium supplementation. We used Bio-Germanium, an organic germanium compound naturally synthesized via a yeast fermentation process. An 8-week randomized, double-blind, placebo-controlled study was conducted with 130 subjects with leukocyte counts of 4-8 (×10 3 /μL) divided into the Bio-Germanium group and the placebo group. Anthropometric measurements; blood collection; biochemical analysis; urinalysis; and natural killer cell activity, cytokine and immunoglobulin assays were conducted. Results showed the Bio-Germanium group exhibited NK cell activity increases at effector cell:target cell (E:T) ratios of 50:1, 10:1, 5:1 and 2.5:1 (12.60±32.91%, 10.19±23.88%, 9.28±16.49% and 7.27±15.28%, respectively), but the placebo group showed decreases (P<0.01). The difference in the IgG1 change from baseline to follow-up between the Bio-Germanium and placebo groups was significant (P = 0.044). Our results and earlier clinical study of Bio-Germanium confirm that Bio-Germanium acts as an effective immunostimulant by increasing the cytotoxicity of NK cells and activating immunoglobulin, B cells and tumor necrosis factor (TNF)-α (P<0.05). As we have added newly discovered clinical findings for germanium's immunostimulation mechanism, we
Background
Rubus coreanus
(
R. coreanus
) possesses properties that may decrease cholesterol levels.
Methods
The effects of unripe
R. coreanus
(uRC) consumption on low-density lipoprotein (LDL) and total cholesterol levels related to decreased circulating apolipoprotein (Apo) B and oxidized LDL levels were evaluated. This randomized, double-blind, placebo-controlled study included subjects with borderline-high cholesterol levels (between 200 and 239 mg/dL) who consumed one capsule daily containing 600 mg of freeze-dried uRC extract (
n
= 39) or the placebo (
n
= 38).
Results
After 12 weeks, the uRC group showed reductions of 21.23 ± 4.36 mg/dL in total cholesterol levels (
P
= 0.007) and 15.61 ± 4.16 mg/dL in LDL cholesterol levels (
P
= 0.032). In addition, significantly greater reductions in Apo B levels were observed in the uRC group (− 3.48 ± 3.40 mg/dL), but Apo B levels were increased in the placebo group (6.21 ± 2.84 mg/dL;
P
= 0.032). Furthermore, a remarkably lower oxidized LDL level was detected in the uRC group (57.76 ± 2.07 U/L) than in the placebo group (66.09 ± 3.47 U/L) after 12 weeks of consumption (
P =
0.044).
Conclusions
Because of its cholesterol-lowering effect, uRC shows great promise as a therapeutic agent for subjects with borderline-high total blood cholesterol levels.
Trial registration
ClinicalTrials.gov Identifier:
NCT03649620
(8/28/2018, retrospectively registered).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.