The strain dependence of conductance of monolayer graphene has been studied experimentally here. The results illustrate the notable transitions: the slight increase, the dramatic decrease, and the sudden dropping of the conductance by gradually increasing the uniaxial strain. The graphene conductance behaves reversibly by tuning of the elastic tensile strain up to 4.5%, while it fails to recover after the plastic deformation at 5%. The change in conductance due to strain is surprisingly high, which indicates the potential applications in electromechanical devices.
Spin-orbit torque (SOT) provides an ultrafast and energy-efficient means to switch magnetization, which is of fundamental and technical importance for spintronic devices. [1][2][3][4][5] A typical SOT device consists of heavy metal/ferromagnet (HM/FM) bilayer, where the HM (e.g., Pt, W, Ta, etc.) converts charge current into spin current mainly due to the spin Hall effect (SHE) and then exerts a torque on the adjacent FM enabling magnetization manipulation. To improve the energy efficiency of SOT-driven magnetization switching, considerable efforts have been made to enhance the charge-spin conversion efficiency of HM [6][7][8][9] and reduce the shunting current in the FM. [10,11] Engineering the bilayer structure [9,12] or replacing HM by novel materials with larger charge-spin conversion efficiency and higher conductivity [10,13,14] are possible avenues to realize higher SOT efficiency. Manipulation of magnetization by electric-current-induced spin-orbit torque (SOT) is of great importance for spintronic applications because of its merits in energy-efficient and high-speed operation. An ideal material for SOT applications should possess high charge-spin conversion efficiency and high electrical conductivity. Recently, transition metal dichalcogenides (TMDs) emerge as intriguing platforms for SOT study because of their controllability in spin-orbit coupling, conductivity, and energy band topology. Although TMDs show great potentials in SOT applications, the present study is restricted to the mechanically exfoliated samples with small sizes and relatively low conductivities.Here, a manufacturable recipe is developed to fabricate large-area thin films of PtTe 2 , a type-II Dirac semimetal, to study their capability of generating SOT. Large SOT efficiency together with high conductivity results in a giant spin Hall conductivity of PtTe 2 thin films, which is the largest value among the presently reported TMDs. It is further demonstrated that the SOT from PtTe 2 layer can switch a perpendicularly magnetized CoTb layer efficiently. This work paves the way for employing PtTe 2 -like TMDs for wafer-scale spintronic device applications.
Lattice strain is a useful and economic way to tune the device performance and is commonly present in nanostructures. Here, we investigated for the first time the exciton spectra evolution in bent ZnO microwires along the radial direction via high spatial/energy resolution cathodeluminescence spectroscopy at 5.5 K. Our experiments show that the exciton peak splits into multi fine peaks towards the compressive part while retains one peak in the tensile part and the emission peak displays a continuous blue-shift from tensile to compressive edges. In combination with first-principles calculations, we show that the observed NBE emission splitting is due to the valence band splitting and the absence of peak splitting in the tensile part maybe due to the highly localized holes in the A band and the carrier density distribution across the microwire. Our studies may pave the way to design nanophotonic and electronic devices using bent ZnO nanowires.
Bi2Se3 nanocrystals with various morphologies, including nanotower, nanoplate, nanoflake, nanobeam and nanowire, have been synthesized. Well-distinguished Shubnikov-de Haas (SdH) oscillations were observed in Bi2Se3 nanoplates and nanobeams. Careful analysis of the SdH oscillations suggests the existence of Berry's phase π, which confirms the quantum transport of the surface Dirac fermions in both Bi2Se3 nanoplates and nanobeams without intended doping. The observation of the singular quantum transport of the topological surface states implies that the high-quality Bi2Se3 nanostructures have superiorities for investigating the novel physical properties and developing the potential applications.
PtS2 is a newly developed group 10 2D layered material with high carrier mobility, wide band gap tunability, strongly bound excitons, symmetrical metallic and magnetic edge states, and ambient stability, making it attractive in nanoelectronic, optoelectronic, and spintronic fields. To the aim of application, a large-scale synthesis is necessary. For transition-metal dichalcogenide (TMD) compounds, a thermally assisted conversion method has been widely used to fabricate wafer-scale thin films. However, PtS2 cannot be easily synthesized using the method, as the tetragonal PtS phase is more stable. Here, we use a specified quartz part to locally increase the vapor pressure of sulfur in a chemical vapor deposition furnace and successfully extend this method for the synthesis of PtS2 thin films in a scalable and controllable manner. Moreover, the PtS and PtS2 phases can be interchangeably converted through a proposed strategy. Field-effect transistor characterization and photocurrent measurements suggest that PtS2 is an ambipolar semiconductor with a narrow band gap. Moreover, PtS2 also shows excellent gas-sensing performance with a detection limit of ∼0.4 ppb for NO2. Our work presents a relatively simple way of synthesizing PtS2 thin films and demonstrates their promise for high-performance ultrasensitive gas sensing, broadband optoelectronics, and nanoelectronics in a scalable manner. Furthermore, the proposed strategy is applicable for making other PtX2 compounds and TMDs which are compatible with modern silicon technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.