Development of high-performance unipolar n-type organic semiconductors still remains as a great challenge. In this work, all-acceptor bithiophene imide-based ladder-type small molecules BTI n and semiladder-type homopolymers PBTI n ( n = 1-5) were synthesized, and their structure-property correlations were studied in depth. It was found that Pd-catalyzed Stille coupling is superior to Ni-mediated Yamamoto coupling to produce polymers with higher molecular weight and improved polymer quality, thus leading to greatly increased electron mobility (μ). Due to their all-acceptor backbone, these polymers all exhibit unipolar n-type transport in organic thin-film transistors, accompanied by low off-currents (10-10 A), large on/off current ratios (10), and small threshold voltages (∼15-25 V). The highest μ, up to 3.71 cm V s, is attained from PBTI1 with the shortest monomer unit. As the monomer size is extended, the μ drops by 2 orders to 0.014 cm V s for PBTI5. This monotonic decrease of μ was also observed in their homologous BTI n small molecules. This trend of mobility decrease is in good agreement with the evolvement of disordered phases within the film, as revealed by Raman spectroscopy and X-ray diffraction measurements. The extension of the ladder-type building blocks appears to have a large impact on the motion freedom of the building blocks and the polymer chains during film formation, thus negatively affecting film morphology and charge carrier mobility. The result indicates that synthesizing building blocks with more extended ladder-type backbone does not necessarily lead to improved mobilities. This study marks a significant advance in the performance of all-acceptor-type polymers as unipolar electron transporting materials and provides useful guidelines for further development of (semi)ladder-type molecular and polymeric semiconductors for applications in organic electronics.
Piezo1 represents a prototype of eukaryotic mechanotransduction channels. The full-length 2547-residue mouse Piezo1 possesses a unique 38-transmembrane-helix (TM) topology and is organized into a three-bladed, propeller-shaped architecture, comprising a central ion-conducting pore, three peripheral blade-like structures, and three 90-Å-long intracellular beam-resembling structures that bridge the blades to the pore. However, how mechanical force and chemicals activate the gigantic Piezo1 machinery remains elusive. Here we identify a novel set of Piezo1 chemical activators, termed Jedi, which activates Piezo1 through the extracellular side of the blade instead of the C-terminal extracellular domain of the pore, indicating long-range allosteric gating. Remarkably, Jedi-induced activation of Piezo1 requires the key mechanotransduction components, including the two extracellular loops in the distal blade and the two leucine residues in the proximal end of the beam. Thus, Piezo1 employs the peripheral blade-beam-constituted lever-like apparatus as a designated transduction pathway for long-distance mechano- and chemical-gating of the pore.
Chemical doping is a key process for investigating charge transport in organic semiconductors and improving certain (opto)electronic devices 1-9 . N-(electron)doping is fundamentally more challenging than p-(hole)doping and typically achieves very low doping efficiency (η) <10% 1,10 . An efficient molecular n-dopant should simultaneously exhibit a high reducing power and air stability for broad applicability 1,5,6,9,11 , which is very challenging. Here we show a general concept of catalysed n-doping of organic semiconductors using air-stable precursor-type molecular dopants. Incorporation of a transition metal as vapor-deposited nanoparticles (e.g. Pt, Au, Pd) or solution-processable 2 organometallic complexes (e.g. Pd 2 (dba) 3 ) catalyses the reaction, as assessed by experimental and theoretical evidence, enabling drastically increased η in a much shorter doping time and high electrical conductivities >100 S cm −1 12 . This methodology has technological implications for realizing improved semiconductor devices and offers a broad exploration space of ternary systems comprising catalysts, molecular dopants, and semiconductors, thus opening new opportunities in n-doping research and applications.N-doping of organic semiconductors is important for developing light-emitting diodes 1,6-9 , solar cells 7,8 , thin-film transistors 10 , and thermoelectric devices 12,13 . Although solution-based ndoping is widely investigated, only few air-stable n-dopants have been developed (Fig. S1), with the most prominent being organic hydrides 5,9,14-18 such as benzoimidazole derivatives, dimers of organic radicals 11,19,20 such as nineteen-electron organometallic sandwich compounds, and mono-/multi-valent anions 8,21,22 such as OH − , F − and Ox 2− . These air-stable dopants have a deep ionization potential (IP) in their initial forms, thus, cannot directly transfer electrons to n-dope organic semiconductors with a low electron affinity (EA). For anions, it was shown that dispersion into small anhydrous clusters enables sufficiently high donor levels for n-doping organic semiconductors with EAs up to 2.4 eV 8 . Hydride and dimer dopant precursors (or referred as precursor-type dopants) most undergo a C-H and C-C bond cleavage reaction, respectively, to generate active-doping-species in situ before electron transfer can occur [23][24][25][26] . Thus, their reducing strength and reaction kinetics are strongly affected by the thermodynamics and the activation energies of the doping reaction [23][24][25][26] . If the activation energy to the product is reduced, it is expected that the reaction rate, and extent of doping, will greatly increase (Fig. 1a). 3Transition metal (TM) catalysed C-H and C-C bond cleavage reactions are widely used in organic synthesis, with the most common TMs belonging to group 8-11 elements and the catalysts in the form of nanoparticles (NPs) and organometallic complexes 27,28 . Nanoparticle size, supporting material, and chemical structure of the complex can greatly affect catalytic activities. Thus, an i...
High-performance unipolar n-type polymer semiconductors are critical for advancing the field of organic electronics, which relies on the design and synthesis of new electron-deficient building blocks with good solubilizing capability, favorable geometry, and optimized electrical properties. Herein, two novel imide-functionalized thiazoles, 5,5'-bithiazole-4,4'-dicarboxyimide (BTzI) and 2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide (DTzTI), are successfully synthesized. Single crystal analysis and physicochemical study reveal that DTzTI is an excellent building block for constructing all-acceptor homopolymers, and the resulting polymer poly(2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide) (PDTzTI) exhibits unipolar n-type transport with a remarkable electron mobility (μ ) of 1.61 cm V s , low off-currents (I ) of 10 -10 A, and substantial current on/off ratios (I /I ) of 10 -10 in organic thin-film transistors. The all-acceptor homopolymer shows distinctive advantages over prevailing n-type donor-acceptor copolymers, which suffer from ambipolar transport with high I s > 10 A and small I /I s < 10 . The results demonstrate that the all-acceptor approach is superior to the donor-acceptor one, which results in unipolar electron transport with more ideal transistor performance characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.