The overall process and mechanism of the centrifugal pre-film atomization with double swirling flow were studied using the methods of large Eddy simulation and volume of fluid. The atomization process includes a centrifugal jet under the primary swirl and a pre-film atomization under the two-stage counter-rotating swirl at the venturi outlet. The fuel is ejected from the outlet of the centrifugal nozzle and undergoes the transient process of reaching the venturi throat. The breaking mechanism of liquid film in this process is the same as that of the formation mechanism of the mushroom-shaped tip of liquid jet. The numerical simulation results are highly consistent with the experimental results. For the formation and development of the liquid film on the venturi wall, collision and wave action promote the expansion of the liquid film. At the outlet position of the venturi tube, the short wave mode and the two-stage reverse swirling structure play major roles in the fragmentation process of the flake liquid film, which coincides with the flow characteristics given by the experiment. It is found that the spray cone angle increases as the fuel flow rate increases, and the numerical results are basically consistent with the predicted values of the empirical formula under different fuel flow rates. The droplet size distribution showed a Poisson distribution during the atomization of centrifugal jets and pre-film, and the peak position and variation trend of the droplet size distribution at the outlet of the venturi tube were basically consistent with experimental results.
This study is aimed to establish a detailed chemical reactor network model based on the analysis of complex reaction flowfield structures in aeroengine combustors, so that the emissions of nitrogen oxides and carbon monoxide from advanced civil aeroengines can be predicted quickly and accurately. In this study, a low-emission concentric staged combustor with three axial swirlers is designed for civil aeroengines, and numerical simulations of the three-dimensional reaction flowfields of the combustor during four load phases of takeoff, climb, approach, and idle, are conducted. Based on the numerical results, a simple chemical reactor network model with seven perfectly stirred reactors and a detailed chemical reactor network model using up to 15 perfectly stirred reactors are established. Using the developed chemical reactor network models and the detailed JP10 chemical reaction mechanism—composed of 374 step elementary reactions and 82 species, the emission variations of nitrogen oxides and carbon monoxide are predicted and compared with those estimated using an empirical formula and with the numerical results as a function of the combustion load. Using a combined chemical reactor network–computational fluid dynamics analysis method, the variations of the formation path, the mechanism, and the amounts of nitrogen oxides in the combustor and in the perfectly stirred reactors, are analyzed as a function of the combustion load. In addition, the effects of fuel and air pilot-to-total ratio on nitrogen oxides emissions for the 100% load condition are also analyzed. It is found that at high loads, the production rate of the thermal NO is the highest, while at low loads, the production rate of the prompt NO is the highest. The nitrogen oxide is mainly produced in the pilot zone and the recirculation zone, while its production in the outer main stage zone is low. The results show that the NOx emissions predicted by the complex chemical reactor network model are most consistent with those elicited using the empirical formula.
The cold and reaction flow fields of a combustor with two coaxial swirlers are investigated by means of large eddy simulation. Effective data processing methods such as proper orthogonal decomposition and fast Fourier transform are employed for analysis. The complex flow phenomena such as swirling jet, shear layer, recirculation zone, and precession vortex core are observed and their characteristics are analyzed. The dynamics of the flame and its interactions with the complex swirling flows and large-scale eddies are characterized. The precession vortex core structures and its influences on the combustion process are emphatically explored. It is found that the outer shear layer produces spiral precession vortex core cantilever structures and the change of structural characteristics of the PVC determines the pressure pulsation frequency of the combustor. The results also indicate precession vortex core accelerates the mixing of unburned and burned mixture, leading to the ignition. The principal structures are studied by determining the highest energy modes via proper orthogonal decomposition. The modes are classified according to energy size. By means of proper orthogonal decomposition four-decomposition method, the vortexes of different energy and scales in swirling flow field are classified and analyzed in detail, the flow field is reconstructed, and the large-scale coherent structures and small energy flow structures are obtained. A spectral map of the turbulent kinetic energy density exhibits the −5/3 slope given by the Kolmogorov–Obukhov law. Based on the analysis of the vortex structures and their evolution, and the analysis of the transports and distributions of flow field characteristic parameters, a novel unsteady swirling flow combustion organization mechanism is proposed. It is found that combustion mainly occurs in low-energy small-scale vortexes, releasing a large amount of heat. High-temperature gas enters the recirculation zone and continues to provide energy for the precession vortex cores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.