Summary p97 is a AAA-ATPase with multiple cellular functions, one of which is critical regulation of protein homeostasis pathways. We describe the characterization of CB-5083, a potent, selective and orally bioavailable inhibitor of p97. Treatment of tumor cells with CB-5083 leads to accumulation of poly-ubiquitinated proteins, retention of endoplasmic reticulum associated degradation (ERAD) substrates and generation of irresolvable proteotoxic stress leading to activation of the apoptotic arm of the unfolded protein response (UPR). In xenograft models, CB-5083 causes modulation of key p97-related pathways, induces apoptosis and has antitumor activity in a broad range of both hematological and solid tumor models. Molecular determinants of CB-5083 activity include expression of genes in the ERAD pathway providing a potential strategy for patient selection.
Proteasome inhibition has been validated as a therapeutic modality in the treatment of multiple myeloma and non-Hodgkin's lymphoma. Carfilzomib, an epoxyketone currently undergoing clinical trials in malignant diseases, is a highly selective inhibitor of the chymotrypsin-like (CT-L) activity of the proteasome. A chemistry effort was initiated to discover orally bioavailable analogues of carfilzomib, which would have potential for improved dosing flexibility and patient convenience over intravenously administered agents. The lead compound, 2-Me-5-thiazole-Ser(OMe)-Ser(OMe)-Phe-ketoepoxide (58) (PR-047), selectively inhibited CT-L activity of both the constitutive proteasome (beta5) and immunoproteasome (LMP7) and demonstrated an absolute bioavailability of up to 39% in rodents and dogs. It was well tolerated with repeated oral administration at doses resulting in >80% proteasome inhibition in most tissues and elicited an antitumor response equivalent to intravenously administered carfilzomib in multiple human tumor xenograft and mouse syngeneic models. The favorable pharmacologic profile supports its further development for the treatment of malignant diseases.
The AAA-ATPase p97 plays vital roles in mechanisms of protein homeostasis, including ubiquitin-proteasome system (UPS) mediated protein degradation, endoplasmic reticulum-associated degradation (ERAD), and autophagy. Herein we describe our lead optimization efforts focused on in vitro potency, ADME, and pharmaceutical properties that led to the discovery of a potent, ATP-competitive, D2-selective, and orally bioavailable p97 inhibitor 71, CB-5083. Treatment of tumor cells with 71 leads to significant accumulation of markers associated with inhibition of UPS and ERAD functions, which induces irresolvable proteotoxic stress and cell death. In tumor bearing mice, oral administration of 71 causes rapid accumulation of markers of the unfolded protein response (UPR) and subsequently induces apoptosis leading to sustained antitumor activity in in vivo xenograft models of both solid and hematological tumors. 71 has been taken into phase 1 clinical trials in patients with multiple myeloma and solid tumors.
The ATP-dependent degradation of polyubiquitylated proteins by the 26S proteasome is essential for the maintenance of proteome stability and the regulation of a plethora of cellular processes. Degradation of substrates is preceded by the removal of polyubiquitin moieties through the isopeptidase activity of the subunit Rpn11. Here we describe three crystal structures of the heterodimer of the Mpr1-Pad1-N-terminal domains of Rpn8 and Rpn11, crystallized as a fusion protein in complex with a nanobody. This fusion protein exhibits modest deubiquitylation activity toward a model substrate. Full activation requires incorporation of Rpn11 into the 26S proteasome and is dependent on ATP hydrolysis, suggesting that substrate processing and polyubiquitin removal are coupled. Based on our structures, we propose that premature activation is prevented by the combined effects of low intrinsic ubiquitin affinity, an insertion segment acting as a physical barrier across the substrate access channel, and a conformationally unstable catalytic loop in Rpn11. The docking of the structure into the proteasome EM density revealed contacts of Rpn11 with ATPase subunits, which likely stabilize the active conformation and boost the affinity for the proximal ubiquitin moiety. The narrow space around the Rpn11 active site at the entrance to the ATPase ring pore is likely to prevent erroneous deubiquitylation of folded proteins.n eukaryotes, the ubiquitin (Ub) proteasome system (UPS) is responsible for the regulated degradation of proteins (1-5). The UPS plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer needed. Consequently, the UPS is critically involved in numerous cellular processes, including cell cycle progression, apoptosis, and DNA damage repair, and malfunctions of the system often result in disease.The 26S proteasome executes the degradation of substrates that are marked for destruction by the covalent attachment of polyubiquitin chains. It is a molecular machine of 2.5 MDa comprising two subcomplexes, the 20S core particle (CP) and one or two 19S regulatory particles (RPs), which associate with the ends of the cylinder-shaped CP (6-8). The recognition and recruitment of polyubiquitylated substrates, their deubiquitylation, ATP-dependent unfolding, and translocation into the core particle take place in the RP. The structurally and mechanistically well-characterized CP houses the proteolytic activities and sequesters them from the environment, thereby avoiding collateral damage (9).The RPs attach to the outer α-rings of the CP, which control access to the proteolytic chamber formed by the inner β-subunit rings (10). Recently, the molecular architecture of the 26S holocomplex was established using cryo-EM-based approaches (11,12), and a pseudoatomic model of the holocomplex was put forward (13). The RP is formed by two subcomplexes, known as the base and the lid, which assemble independent...
Inhibition of mitotic kinesins represents a novel approach for the discovery of a new generation of anti-mitotic cancer chemotherapeutics. We report here the discovery of the first potent and selective inhibitor of centromere-associated protein E (CENP-E) 3-chloro-N-{(1S)-2-[(N,N-dimethylglycyl)amino]-1-[(4-{8-[(1S)-1-hydroxyethyl]imidazo[1,2-a]pyridin-2-yl}phenyl)methyl]ethyl}-4-[(1-methylethyl)oxy]benzamide (GSK923295; 1), starting from a high-throughput screening hit, 3-chloro-4-isopropoxybenzoic acid 2. Compound 1 has demonstrated broad antitumor activity in vivo and is currently in human clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.