Chrysanthemum (Chrysanthemum × morifolium) is one of the most important ornamental plants in the world. They are typically used as cut flowers or potted plants. Chrysanthemum can exhibit red, purple, pink, yellow and white flowers, but lack bright red and blue flowers. In this study, we identified two chrysanthemum cultivars, C × morifolium ‘LPi’ and C × morifolium ‘LPu’, that only accumulate flavonoids in their ligulate flowers. Next, we isolated seven anthocyanin biosynthesis genes, namely CmCHS, CmF3H, CmF3’H, CmDFR, CmANS, CmCHI and Cm3GT in these cultivars. RT-PCR and qRT-PCR analyses showed that CmF3′H was the most important enzyme required for cyanidin biosynthsis. To rebuild the delphinidin pathway, we downregulated CmF3’H using RNAi and overexpressed the Senecio cruentus F3′5′H (PCFH) gene in chrysanthemum. The resultant chrysanthemum demonstrated a significantly increased content of cyanidin and brighter red flower petals but did not accumulate delphinidin. These results indicated that CmF3′H in chrysanthemum is important for anthocyanin accumulation, and Senecio cruentus F3′5′H only exhibited F3′H activity in chrysanthemum but did not rebuild the delphinidin pathway to form blue flower chrysanthemum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.