Graphene-based metamaterials
have been theoretically demonstrated
as an enabler for applications as perfect absorbers, photodetectors,
light emitters, modulators, and tunable spintronic devices. However,
challenges associated with conventional film deposition techniques
have made the multilayered metamaterial difficult to fabricate, which
have severely limited experimental validations. Herein, the experimental
demonstration of the phototunable graphene-based multilayered metamaterials
on diverse substrates by a transfer-free, solution-phase deposition
method is presented. The optical properties of the metamaterials are
tuned dynamically by controllable laser-mediated conversion from graphene
oxide layers into graphene counterparts, which exhibit different degrees
of conversion, which would offer huge potential for devices design
and fabrication. The converted graphene layers present comparable
(within 10%) optical conductivity to their chemical vapor deposited
analogues. Moreover, laser patterning leads to functional photonic
devices such as ultrathin flat lenses embedded in the lab-on-chip
device, which maintains consistency and exhibits subwavelength focusing
resolution in aqueous environments without any noticeable degradation
compared with the original lens. This graphene-based metamaterial
provides a new experimental platform for broad applications in on-chip
integrated photonic, biomedical, and microfluidic devices.
An ideal solar-thermal absorber requires efficient selective absorption with a tunable bandwidth, excellent thermal conductivity and stability, and a simple structure for effective solar thermal energy conversion. Despite various solar absorbers having been demonstrated, these conditions are challenging to achieve simultaneously using conventional materials and structures. Here, we propose and demonstrate three-dimensional structured graphene metamaterial (SGM) that takes advantages of wavelength selectivity from metallic trenchlike structures and broadband dispersionless nature and excellent thermal conductivity from the ultrathin graphene metamaterial film. The SGM absorbers exhibit superior solar selective and omnidirectional absorption, flexible tunability of wavelength selective absorption, excellent photothermal performance, and high thermal stability. Impressive solar-to-thermal conversion efficiency of 90.1% and solar-to-vapor efficiency of 96.2% have been achieved. These superior properties of the SGM absorber suggest it has a great potential for practical applications of solar thermal energy harvesting and manipulation.
Nanometric flat lenses with three-dimensional subwavelength focusing are indispensable in miniaturized optical systems. However, they are fundamentally challenging to achieve because of the difficulties in accurately controlling the optical wavefront by a film with nanometric thickness. Based on the unique and giant refractive index and absorption modulations of the sprayable graphene oxide thin film during its laser reduction process, we demonstrate a graphene oxide ultrathin (∼200 nm) flat lens that shows far-field three-dimensional subwavelength focusing (λ3/5) with an absolute focusing efficiency of >32% for a broad wavelength range from 400 to 1,500 nm. Our flexible graphene oxide lenses are mechanically robust and maintain excellent focusing properties under high stress. The simple and scalable fabrication approach enables wide potential applications in on-chip nanophotonics. The wavefront shaping concept opens up new avenues for easily accessible, highly precise and efficient optical beam manipulations with a flexible and integratable planar graphene oxide ultrathin film.
The 2H-to-1T' phase transition in transition metal dichalcogenides (TMDs) has been exploited to phase-engineer TMDs for applications in which the metallicity of the 1T' phase is beneficial. However, phase-engineered 1T'-TMDs are metastable; thus, stabilization of the 1T' phase remains an important challenge to overcome before its properties can be exploited. Herein, we performed a systematic study of the 2H-to-1T' phase evolution by lithiation in ultrahigh vacuum. We discovered that by hydrogenating the intercalated Li to form lithium hydride (LiH), unprecedented long-term (>3 months) air stability of the 1T' phase can be achieved. Most importantly, this passivation method has wide applicability for other alkali metals and TMDs. Density functional theory calculations reveal that LiH is a good electron donor and stabilizes the 1T' phase against 2H conversion, aided by the formation of a greatly enhanced interlayer dipole-dipole interaction. Nonlinear optical studies reveal that air-stable 1T'-TMDs exhibit much stronger optical Kerr nonlinearity and higher optical transparency than the 2H phase, which is promising for nonlinear photonic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.