Slippage effects in microchannels that depend on the surface characteristics are investigated, taking into account hydrophilic, hydrophobic, and superhydrophobic wettabilities. Microscale grooves are fabricated along the vertical walls to form superhydrophobic surfaces, which enable both the visualization of the flow field near the walls and the direct measurement of the slip length. Velocity profiles are measured using microparticle image velocimetry and those in hydrophilic glass, hydrophobic polydimethylsiloxane (PDMS), and superhydrophobic PDMS microchannels are compared. For the hydrophilic glass surface, the velocity near the wall smoothly decreases to zero, which is consistent with the well-known, no-slip boundary condition. On the other hand, for the flow in the hydrophobic PDMS microchannel, the velocity profile approaches some finite value at the wall, showing a slip length of approximately 2μm. In addition, to directly measure the velocity in the superhydrophobic microchannel, transverse groove structures are fabricated along the vertical walls in the microchannel. For this surface, the velocity profile approaches a value that is larger than that for the PDMS case. Incidentally, instabilities in the velocity profile are observed at the interface with the air gap. Furthermore, the velocity profile near the wall shows a larger slip length than for any of the other experimental setups. For groove structures that are high and wide, the liquid meniscus forms curves in the cavity so that a wavy flow is created beyond the grooves. Moreover, if the pitch-to-width ratio of the groove structure increases, meniscus penetration into the cavity is observed.
Recently, inkjet printing technology has become crucial in many industrial fabrication fields mainly due to its advantages of noncontact and fast pattern generation. In this paper, we investigate an electrostatic field induced inkjet printing system, which is based on an electrohydrodynamic process, for drop-on-demand jetting. In order to locate the optimal jetting conditions, we tested jetting performance for various bias voltages and pulse signals. To investigate the characteristics of drop-on-demand operation and micropatterning, we used conductive silver ink and examined the drops and lines patterned on a substrate.
This study investigated the effect of dietary astaxanthin (AST) on the meat quality, antioxidant status, and immune response of chickens exposed to heat stress. Four hundred and eighty male broilers were assigned to four treatments including AST0, AST20, AST40, and AST80 with 0, 20, 40, and 80 ppm astaxanthin supplementation levels, respectively. There was a linear decrease of malondialdehyde (MDA) in leg muscle. Catalase and superoxide dismutase levels in the plasma were linearly increased. There was a linear increase in the level of total antioxidant capacity in the leg muscle. The 3-ethylbenzothiazoline-6-sulfonate reducing activity of leg muscle was significantly increased in the AST80 treatment. The AST40 treatment showed an increase in 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity of leg muscles. Breast meat redness and yellowness were linearly increased. The astaxanthin-supplemented treatments exhibited lower drip loss and MDA concentration of leg muscle compared with the AST0 treatment at days 3 and 9 of storage. Supplementation of 40 or 80 mg/kg astaxanthin significantly decreased heat shock protein (HSP)27, HSP70, tumor necrosis factor alpha, and interleukin-6 expression in the livers. The feather corticosterone was significantly lower in the astaxanthin-supplemented treatments than in the AST0 treatment. In conclusion, astaxanthin decreased the hyperthermic stress level and improved meat quality, and antioxidant status of chickens exposed to heat stress.
Because of the amphiphilic attraction to tannic acid and sharp nano-Au-SERS response, a single substrate enabled wide label-free sensing toward ionic compounds, hydrophobic molecules, biological responses, and chemical reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.