Premature ovarian insufficiency (POI) is clinically irreversible in women aged over 40 years. Although numerous studies have demonstrated satisfactory outcomes of mesenchymal stem cell therapy, the underlying therapeutic mechanism remains unclear. Exosomes were collected from the culture medium of human umbilical cord mesenchymal stem cells (hUMSCs) and assessed by electron microscopy and Western blot (WB) analysis. Then, exosomes were added to the culture medium of cyclophosphamide (CTX)‐damaged human granulosa cells (hGCs), and the mixture was injected into the ovaries of CTX‐induced POI model mice before detection of antiapoptotic and apoptotic gene expression. Next, the microRNA expression profiles of hUMSC‐derived exosomes (hUMSC‐Exos) were detected by small RNA sequencing. The ameliorative effect of exosomal microRNA‐17‐5P (miR‐17‐5P) was demonstrated by miR‐17‐5P knockdown before assessment of ovarian phenotype and function, reactive oxygen species (ROS) levels and SIRT7 expression. Finally, SIRT7 was inhibited or overexpressed by RNA interference or retrovirus transduction, and the protein expression of PARP1, γH2AX, and XRCC6 was analyzed. The ameliorative effect of hUMSC‐Exos on POI was validated. Our results illustrated that hUMSC‐Exos restored ovarian phenotype and function in a POI mouse model, promoted proliferation of CTX‐damaged hGCs and ovarian cells, and alleviated ROS accumulation by delivering exosomal miR‐17‐5P and inhibiting SIRT7 expression. Moreover, our findings elucidated that miR‐17‐5P repressed PARP1, γH2AX, and XRCC6 by inhibiting SIRT7. Our findings suggest a critical role for exosomal miR‐17‐5P and its downstream target mRNA SIRT7 in hUMSC transplantation therapy. This study indicates the promise of exosome‐based therapy for POI treatment.
The substitution of the seventeenth amino acid glutamate by lysine in the homologous structural domain of the Akt1 gene pleckstrin is a somatic cellular mutation found in breast, colorectal, and ovarian cancers, named p. Glu17Lys or E17K. In recent years, a growing number of studies have suggested that this mutation may play a unique role in the development of tumors. In this review article, we describe how AKT1(E17K) mutations stimulate downstream signals that cause cells to emerge transformed; we explore the differential regulation and function of E17K in different physiological and pathological settings; and we also describe the phenomenon that E17K impedes tumor growth by interfering with growth-promoting and chemotherapy-resistant AKT1
low
QCC generation, an intriguing finding that mutants may prolong tumor patient survival by activating feedback mechanisms and disrupting transcription. This review is intended to provide a better understanding of the role of AKT1(E17K) in cancer and to inform the development of AKT1(E17K)-based antitumor strategies.
ObjectiveDysregulation of transfer RNA (tRNA)-derived small noncoding RNA (tsRNA) signatures in human serum has been found in various diseases. Here, we determine whether the signatures of tsRNAs in serum can serve as biomarkers for diagnosis or prognosis of systemic lupus erythematosus (SLE).MethodsInitially, small RNA sequencing was employed for the screening serum tsRNAs obtained from SLE patients, followed by validation with TaqMan probe-based quantitative reverse transcription-PCR (RT-PCR) assay. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic efficacy. The biological functions of tsRNAs were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) assay.ResultsWe first analyzed tsRNA signatures in SLE serum and identified that tRF-His-GTG-1 was significantly upregulated in SLE serum. The combination of tRF-His-GTG-1 and anti-dsDNA could serve as biomarkers for diagnosing SLE with a high area under the curve (AUC) of 0.95 (95% CI = 0.92–0.99), sensitivity (83.72%), and specificity (94.19%). Importantly, the noninvasive serum tRF-His-GTG-1 could also be used to distinguish SLE with LN or SLE without LN with AUC of 0.81 (95% CI, 0.73–0.88) and performance (sensitivity 66.27%, specificity 96.15%). Moreover, the serum tsRNA is mainly secreted via exosome and can directly target signaling molecules that play crucial roles in regulating the immune system.ConclusionIn this study, it has been demonstrated for the first time that serum tsRNAs can be employed as noninvasive biomarkers for the efficient diagnosis and prediction of nephritis in SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.