Since the first connection between Fenton chemistry and biomedicine, numerous studies have been presented in this field. Comprehensive presentation of the guidance from Fenton chemistry and a summary of its representative applications in cancer therapy would help us understand and promote the further development of this field. This comprehensive review first supplies basic information regarding Fenton chemistry, including Fenton reactions and Fenton-like reactions. Subsequently, the current progress of Fenton chemistry is discussed, with some corresponding representative examples presented. Furthermore, the current strategies for further optimizing the performance of chemodynamic therapy guided by Fenton chemistry are highlighted. Most importantly, future perspectives on the combination of biomedicine with Fenton chemistry or a wider range of catalytic chemistry approaches are presented. We hope that this review will attract positive attention in the chemistry, materials science, and biomedicine fields and further tighten their connections.
Redox homeostasis is one of the main reasons for reactive oxygen species (ROS) tolerance in hypoxic tumors, limiting ROS‐mediated tumor therapy. Proposed herein is a redox dyshomeostasis (RDH) strategy based on a nanoplatform, FeCysPW@ZIF‐82@CAT Dz, to disrupt redox homeostasis, and its application to improve ROS‐mediated hypoxic tumor therapy. Once endocytosed by tumor cells, the catalase DNAzyme (CAT Dz) loaded zeolitic imidazole framework‐82 (ZIF‐82@CAT Dz) shell can be degraded into Zn2+ as cofactors for CAT Dz mediated CAT silencing and electrophilic ligands for glutathione (GSH) depletion under hypoxia, both of which lead to intracellular RDH and H2O2 accumulation. These “disordered” cells show reduced resistance to ROS and are effectively killed by ferrous cysteine‐phosphotungstate (FeCysPW) induced chemodynamic therapy (CDT). In vitro and in vivo data demonstrate that the pH/hypoxia/H2O2 triple stimuli responsive nanocomposite can efficiently kill hypoxic tumors. Overall, the RDH strategy provides a new way of thinking about ROS‐mediated treatment of hypoxic tumors.
Biodegradable nanoprodrugs, inheriting the antitumor effects of chemotherapy drugs and overcoming the inevitable drawback of side effects on normal tissues, hold promise as next‐generation cancer therapy candidates. Biodegradable nanoprodrugs of transferrin‐modified MgO2 nanosheets are developed to selectively deliver reactive oxygen species to cancer cells for molecular dynamic therapy strategy. The nanosheets favor the acidic and low catalase activity tumor microenvironment to react with proton and release nontoxic Mg2+. This reaction simultaneously produces abundant H2O2 to induce cell death and damage the structure of transferrin to release Fe3+, which will react with H2O2 to produce highly toxic ·OH to kill tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.