Accurate mapping of built-up land is essential for urbanization monitoring and ecosystem research. At present, remote sensing is one of the primary means used for real-time and accurate surveying and mapping of built-up land, due to the long time series and multi-information advantages of existing remote sensing images and the ability to obtain highly precise year-by-year built-up land maps. In this study, we obtained feature-enhanced data regarding built-up land from Landsat images and phenology-based algorithms and proposed a method that combines the use of the Google Earth Engine (GEE) and deep learning approaches. The Res-UNet++ structural model was improved for built-up land mapping in Guangdong from 1991 to 2020. Experiments show that overall accuracy of built-up land map in the study area in 2020 was 0.99, the kappa coefficient was 0.96, user accuracy of built-up land was 0.98, and producer accuracy was 0.901. The trained model can be applied to other years with good results. The overall accuracy (OA) of the assessment results every five years was above 0.97, and the kappa coefficient was above 0.90. From 1991 to 2020, built-up land in Guangdong has expanded significantly, the area of built-up land has increased by 71%, and the proportion of built-up land has increased by 3.91%. Our findings indicate that the combined approach of GEE and deep learning algorithms can be developed into a large-scale, long time-series of remote sensing classification techniques framework that can be useful for future land-use mapping research.
Cropland abandonment is one of the most widespread types of land-use change in Southern China. Quickly and accurately monitoring spatial-temporal patterns of cropland abandonment is crucial for food security and a good ecological balance. There are still enormous challenges in the long-term monitoring of abandoned cropland in cloud and rain-prone and cropland-fragmented regions. In this study, we developed an approach to automatically obtain Landsat imagery for two key phenological periods, rather than as a time series, and mapped annual land cover from 1989 to 2021 based on the random forest classifier. We also proposed an algorithm for pixel-based, long-term annual land cover correction based on prior knowledge and natural laws, and generated cropland abandonment maps for Guangdong Province over the past 30 years. This work was implemented in Google Earth Engine. Accuracy assessment of the annual cropland abandonment maps for every five years during study period revealed an overall accuracy of 92–95%, producer (user) accuracy of 90–96% (73–87%), and Kappa coefficients of 0.81–0.88. In recent decades, the cropland abandonment area was relatively stable, at around 50 × 104 ha, while the abandonment rate gradually increased with a decrease in the cultivated area after 2000. The Landsat-based cropland abandonment monitoring method can be implemented in regions such as southern China, and will support food security and strategies for maintaining ecological balance.
The accurate extraction of cropland distribution is an important issue for precision agriculture and food security worldwide. The complex characteristics in southern China pose great challenges to the extraction. In this study, for the objective of accurate extraction and mapping of cropland parcels in multiple crop growth stages in southern China, we explored a method based on unmanned aerial vehicle (UAV) data and deep learning algorithms. Our method considered cropland size, cultivation patterns, spectral characteristics, and the terrain of the study area. From two aspects—model architecture of deep learning and the data form of UAV—four groups of experiments are performed to explore the optimal method for the extraction of cropland parcels in southern China. The optimal result obtained in October 2021 demonstrated an overall accuracy (OA) of 95.9%, a Kappa coefficient of 89.2%, and an Intersection-over-Union (IoU) of 95.7%. The optimal method also showed remarkable results in the maps of cropland distribution in multiple crop growth stages, with an average OA of 96.9%, an average Kappa coefficient of 89.5%, and an average IoU of 96.7% in August, November, and December of the same year. This study provides a valuable reference for the extraction of cropland parcels in multiple crop growth stages in southern China or regions with similar characteristics.
Accurate cropland information is crucial for the assessment of food security and the formulation of effective agricultural policies. Extracting cropland from remote sensing imagery is challenging due to spectral diversity and mixed pixels. Recent advances in remote sensing technology have facilitated the availability of very high-resolution (VHR) remote sensing images that provide detailed ground information. However, VHR cropland extraction in southern China is difficult because of the high heterogeneity and fragmentation of cropland and the insufficient observations of VHR sensors. To address these challenges, we proposed a deep learning-based method for automated high-resolution cropland extraction. The method used an improved HRRS-U-Net model to accurately identify the extent of cropland and explicitly locate field boundaries. The HRRS-U-Net maintained high-resolution details throughout the network to generate precise cropland boundaries. Additionally, the residual learning (RL) and the channel attention mechanism (CAM) were introduced to extract deeper discriminative representations. The proposed method was evaluated over four city-wide study areas (Qingyuan, Yangjiang, Guangzhou, and Shantou) with a diverse range of agricultural systems, using GaoFen-2 (GF-2) images. The cropland extraction results for the study areas had an overall accuracy (OA) ranging from 97.00% to 98.33%, with F1 scores (F1) of 0.830–0.940 and Kappa coefficients (Kappa) of 0.814–0.929. The OA was 97.85%, F1 was 0.915, and Kappa was 0.901 over all study areas. Moreover, our proposed method demonstrated advantages compared to machine learning methods (e.g., RF) and previous semantic segmentation models, such as U-Net, U-Net++, U-Net3+, and MPSPNet. The results demonstrated the generalization ability and reliability of the proposed method for cropland extraction in southern China using VHR remote images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.