Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points.
Recent studies have identified a class of small non-coding RNA molecules, named microRNA (miRNA), that is dysregulated in malignant brain glioblastoma. Substantial data have indicated that miRNA-16 (miR-16) plays a significant role in tumors of various origins. This miRNA has been linked to various aspects of carcinogenesis, including cell apoptosis and migration. However, the molecular functions of miR-16 in gliomagenesis are largely unknown. We have shown that the expression of miR-16 in human brain glioma tissues was lower than in non-cancerous brain tissues, and that the expression of miR-16 decreased with increasing degrees of malignancy. Our data suggest that the expression of miR-16 and nuclear factor (NF)-κB1 was negatively correlated with glioma levels. MicroRNA-16 decreased glioma malignancy by downregulating NF-κB1 and MMP9, and led to suppressed invasiveness of human glioma cell lines SHG44, U87, and U373. Our results also indicated that upregulation of miR-16 promoted apoptosis by suppressing BCL2 expression. Finally, the upregulation of miR-16 in a nude mice model of human glioma resulted in significant suppression of glioma growth and invasiveness. Taken together, our experiments have validated the important role of miR-16 as a tumor suppressor gene in glioma growth and invasiveness, and revealed a novel mechanism of miR-16-mediated regulation in glioma growth and invasiveness through inhibition of BCL2 and the NF-κB1/MMP-9 signaling pathway. Therefore, our experiments suggest the possible future use of miR-16 as a therapeutic target in gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.