Oral squamous cell carcinoma (OSCC) is the most invasive oral malignancy in adults and is associated with a poor prognosis. Accurate prognostic models are urgently needed, however, knowledge of the probable mechanisms behind OSCC tumorigenesis and prognosis remain limited. The clinical importance of the interplay between the immune system and tumor microenvironment has become increasingly evident. This study explored immune-related alterations at the multi-omics level to extract accurate prognostic markers linked to the immune response and presents a more accurate landscape of the immune genomic map during OSCC. The Cancer Genome Atlas (TCGA) OSCC cohort (n = 329) was used to detect the immune infiltration pattern of OSCC and categorize patients into two immunity groups using single-sample gene set enrichment analysis (ssGSEA) and hierarchical clustering analysis. Multiple strategies, including lasso regression (LASSO), Cox proportional hazards regression, and principal component analysis (PCA) were used to screen clinically significant signatures and identify an incorporated prognosis model with robust discriminative power on the survival status of both the training and testing set. We identified two OSCC subtypes based on immunological characteristics: Immunity-high and immunity low, and verified that the categorization was accurate and repeatable. Immunity_ high cluster with a higher immunological and stromal score. 1047 differential genes (DEGs) integrate with immune genes to obtain 319 immue-related DEGs. A robust model with five signatures for OSCC patient prognosis was established. The GEO cohort (n = 97) were used to validate the risk model’s predictive value. The low-risk group had a better overall survival (OS) than the high-risk group. Significant prognostic potential for OSCC patients was found using ROC analysis and immune checkpoint gene expression was lower in the low-risk group. We also investigated at the therapeutic sensitivity of a number of frequently used chemotherapeutic drugs in patients with various risk factors. The underlying biological behavior of the OSCC cell line was preliminarily validated. This study characterizes a reliable marker of OSCC disease progression and provides a new potential target for immunotherapy against this disease.
Chemotherapy is a common method for tumor treatment. However, the non-specific distribution of chemotherapeutic drugs causes the death of normal cells. Nanocarriers, particularly mesoporous carriers, can be modified to achieve targeted and controlled drug release. In this study, mesoporous polydopamine (MPDA) was used as a carrier for the antitumor drug doxorubicin (DOX). To enhance the release efficiency of DOX in the tumor microenvironment, which contains high concentrations of glutathione (GSH), we used N,N-bis(acryloyl)cysteamine as a cross-linking agent to encapsulate the surface of MPDA with fucoidan (FU), producing MPDA-DOX@FU-SS. MPDA-DOX@FU-SS was characterized via transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS), and its antitumor efficacy in vitro was investigated. The optimal conditions for the preparation of MPDA were identified as pH 12 and 20 °C, and the optimal MPDA-to-FU ratio was 2:1. The DOX release rate reached 47.77% in an in vitro solution containing 10 mM GSH at pH 5.2. When combined with photothermal therapy, MPDA-DOX@FU-SS significantly inhibited the growth of HCT-116 cells. In conclusion, MPDA-DOX@FU-SS may serve as a novel, highly effective tumor suppressor that can achieve targeted drug release in the tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.