Selective laser melting (SLM) is a technology of layer-by-layer additive manufacturing using a laser. This technology allows one to get complex-shaped, three-dimensional (3D) specimens directly from metal powder. In this technology, various metal powders are used, including different steels. Stainless steel 1.4404 (CL20ES) and maraging steel 1.2709 (CL50WS) have been investigated. The surface of samples manufactured from CL20ES and CL50WS powders by SLM (with and without combination sandblasting and annealing) was studied by conversion X-ray Mössbauer spectroscopy (CXMS) and conversion electron Mössbauer spectroscopy (CEMS). The surface morphology, elemental composition, and structure were examined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD). Samples with sandblasted (corundum powder) and non-sandblasted surfaces were annealed at 540 °C (CL50WS) or 550 °C (CL20ES) for 6 h in air. Oxidation processes on surfaces of samples manufactured from both initial powders were observed after post-process annealing by CEMS and CXMS, as well as confirmed by XRD. The transformation of the austenitic to ferritic phase was observed in a sandblasted and annealed CL20ES sample by CEMS and XRD.
Stainless steels have the advantage of forming a protective surface layer to prevent corrosion. This layer results from phase and structural changes on the steel surface. Stainless steel samples (1.4404, 316L), whose alloying elements include Cr, Ni, Mo, and Mn, were subjected to the study of the surface layer. Prism-shaped samples (25 × 25 × 3) mm3 were made from CL20ES stainless steel powder, using selective laser melting. After sandblasting with corundum powder and annealing at 550 °C for different periods of time (2, 4, 8, 16, 32, 64, 128 h), samples were studied by conversion X-ray Mössbauer spectroscopy (CXMS), conversion electron Mössbauer spectroscopy (CEMS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The main topics of the research were surface morphology and elemental and phase composition. The annealing of stainless steel samples resulted in a new surface layer comprising leaf-shaped crystals made of chromium oxide. The crystals grew, and their number increased as annealing time was extended. The amount of chromium increased in the surface layer at the expense of iron and nickel, and the longer the annealing time was set, the more chromium was observed in the surface layer. Iron compounds (BCC iron, mixed Fe–Cr oxide) were found in the surface layer, in addition to chromium oxide. BCC iron appeared only after annealing for at least 4 h, which is the initial time of austenitic–ferritic transformation. Mixed Fe–Cr oxide was observed in all annealed samples. All phase changes were observed in the surface layer at approximately 0.6 µm depth.
Selective laser melting (SLM) as an additive manufacturing method makes it possible to quickly produce complexly shaped three-dimensional (3D) metal specimens from a powder. This work describes how SLM affects the surface phase composition of a 3D printed specimen, as analyzed with conversion electron Mössbauer spectroscopy (CEMS), conversion X-ray Mössbauer spectroscopy (CXMS) and X-ray diffraction (XRD). Both stainless 1.4404 (CL20ES) steel and maraging 1.2709 (CL50WS) steel have been investigated. A transformation of the phase composition from the ferritic phase into an austenitic one was proven by comparing the initial CL50WS powder and the final specimen using CXMS. This transformation takes place during the SLM process. No transformation was identified in stainless steel. The differences identified via CEMS between the surface phase composition of the final non-annealed specimens and the surface of the final annealed specimens demonstrated the oxidation of the surface layer. The oxidation occurs during the annealing of the sample in surface layers less than 1 μm thick. The quality of the surface was examined using scanning electron microscopy (SEM), which presented imperfections on the face of the final specimen. Granules of the initial powder bonded to the surface of the specimen and both irregular and spherical pores were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.