The association between preterm delivery (PTD) and exposure to air pollutants has recently become a major concern. We investigated this relationship in Incheon, Republic of Korea, using spatial and temporal modeling to better infer individual exposures. The birth cohort consisted of 52,113 singleton births in 2001–2002, and data included residential address, gestational age, sex, birth date and order, and parental age and education. We used a geographic information system and kriging methods to construct spatial and temporal exposure models. Associations between exposure and PTD were evaluated using univariate and multivariate log-binomial regressions. Given the gestational age, birth date, and the mother’s residential address, we estimated each mother’s potential exposure to air pollutants during critical periods of the pregnancy. The adjusted risk ratios for PTD in the highest quartiles of the first trimester exposure were 1.26 [95% confidence interval (CI), 1.11–1.44] for carbon monoxide, 1.27 (95% CI, 1.04–1.56) for particulate matter with aerodynamic diameter ≤ 10 μm, 1.24 (95% CI, 1.09–1.41) for nitrogen dioxide, and 1.21 (95% CI, 1.04–1.42) for sulfur dioxide. The relationships between PTD and exposures to CO, NO2, and SO2 were dose dependent (p < 0.001, p < 0.02, p < 0.02, respectively). In addition, the results of our study indicated a significant association between air pollution and PTD during the third trimester of pregnancy. In conclusion, our study showed that relatively low concentrations of air pollution under current air quality standards during pregnancy may contribute to an increased risk of PTD. A biologic mechanism through increased prostaglandin levels that are triggered by inflammatory mediators during exposure periods is discussed.
Sodium and potassium are essential for human health. They are important ions in the body and are associated with many physiologic and pathophysiologic processes. The chapter summarizes the basic physiologic actions of sodium and potassium on membranes of the neurologic and muscular systems. It provides information regarding the kinetics, i.e., absorption, distribution, and excretion of these ions and their movement between the intracellular and extracellular compartments. It also explains the physiologic systems that can influence proper homeostasis between sodium and potassium. Concentrations of sodium in the blood that exceed or do not reach the normal value range are called hypernatremia or hyponatremia, respectively. Similarly, the clinicians recognize hyperkalemia and hypokalemia. Pathologies associated with these states are described and examples of some of the diseases are presented here.
In recent years much attention has been focused on the potential for a wide range of xenobiotic chemicals to interact with and disrupt the endocrine systems of animal and human populations. An overview of the chemicals that have been implicated as endocrine disruptors is presented. The ubiquity in the environment and associated body burdens of these chemicals in human populations are described. Potential mechanisms of action are reviewed, including the role of specific intracellular receptors and their interactions with endogenous and exogenous materials. The subsequent upregulation or downregulation of physiological processes at critical stages of development is discussed. The potential for joint toxic action and interaction of chemical mixtures is also discussed. The acknowledged role of wildlife populations as sentinels of potential human health effects is reviewed, and the weight of evidence for the role and impact of endocrine disruptors is presented. The implications of exposure to endocrine-disrupting chemicals for human health are reviewed, with special emphasis on the potential for transgenerational effects in at-risk populations. Recommendations for future research include the development of (1) structural activity and in vivo and in vitro functional toxicology methods to screen chemicals for their endocrine-disrupting ability, (2) biomarkers of exposure and effect, and (3) in situ sentinel systems.
The purpose of this report is to provide an overview of the public health implications of exposure via breast milk to cadmium, lead, and mercury for nursing infants and to provide health-based guidance. Daily intakes were calculated and compared with guidance values used for public health assessments at hazardous waste sites. Cadmium, lead, and mercury under normal conditions are found in breast milk at concentration ranges of < 1 microgram/L, 2-5 micrograms/L, and 1.4-1.7 micrograms/L, respectively. Women exposed environmentally or occupationally can have higher levels in their breast milk. Concentrations of about 5 micrograms/L (cadmium), 20 micrograms/L (lead), and 3.5 micrograms/L (mercury) appear to be adequate screening levels. Many factors affect both the distribution of cadmium, lead, and mercury in breast milk and the health consequences to an infant. It is not clear what additional impact low-level exposure via breast milk may have on an infant born with a body burden to one of these metals. There is sufficient evidence to make the case that contaminated breast milk is a source of potential risk to infants in certain populations. Prevention strategies that include behavior modification and proper nutrition should be communicated to women at risk. Identification and elimination of exposure pathways and a critical analysis of the benefits of breast feeding versus heavy metal exposure are needed on a site-specific or individual basis. Research is required to better understand the impact of low-level exposure to heavy metals via breast milk. Breastfeeding should be encouraged under most circumstances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.