Cerebrolysin (CBL), a mixture of several active peptide fragments and neurotrophic factors including brain-derived neurotrophic factor (BDNF), is currently used in the management of cognitive alterations in patients with dementia. Since Cognitive decline as well as increased dementia are strongly associated with diabetes and previous studies addressed the protective effect of BDNF in metabolic syndrome and type 2 diabetes; hence this work aimed to evaluate the potential neuroprotective effect of CBL in modulating the complications of hyperglycaemia experimentally induced by streptozotocin (STZ) on the rat brain hippocampus. To this end, male adult Sprague Dawley rats were divided into (i) vehicle- (ii) CBL- and (iii) STZ diabetic-control as well as (iv) STZ+CBL groups. Diabetes was confirmed by hyperglycemia and elevated glycated haemoglobin (HbA1c%), which were associated by weight loss, elevated tumor necrosis factor (TNF)-α and decreased insulin growth factor (IGF)-1β in the serum. Uncontrolled hyperglycemia caused learning and memory impairments that corroborated degenerative changes, neuronal loss and expression of caspase (Casp)-3 in the hippocampal area of STZ-diabetic rats. Behavioral deficits were associated by decreased hippocampal glutamate (GLU), glycine, serotonin (5-HT) and dopamine. Moreover, diabetic rats showed an increase in hippocampal nitric oxide and thiobarbituric acid reactive substances versus decreased non-protein sulfhydryls. Though CBL did not affect STZ-induced hyperglycemia, it partly improved body weight as well as HbA1c%. Such effects were associated by enhancement in both learning and memory as well as apparent normal cellularity in CA1and CA3 areas and reduced Casp-3 expression. CBL improved serum TNF-α and IGF-1β, GLU and 5-HT as well as hampering oxidative biomarkers. In conclusion, CBL possesses neuroprotection against diabetes-associated cerebral neurodegeneration and cognitive decline via anti-inflammatory, antioxidant and antiapototic effects.
Inhalation of bacterial endotoxin induces an acute inflammation in the lower respiratory tract. The current study examined the therapeutic effects of bone marrow mesenchymal stem cells (BM-MSCs) in lipopolysaccharide (LPS)-induced pulmonary congestion in rats as compared with dexamethasone (Dexa) and sodium bicarbonate (NaHCO ). LPS (20 µL of LPS of Escherichia coli in each nostril for two consecutive days) induced lung injury as marked by an elevation of number of inflammatory cells especially neutrophils, increased total protein levels, elevation of lipid peroxidation, and reduction of reduced glutathione in bronchoalveolar lavage along with the reduction of reduced glutathione. These deleterious effects were hampered after treatment with BM-MSCs (1 × 10 cells/rat) once before acute lung injury (ALI) induction with LPS to an even better extent than Dexa (2 mg/kg once, ip) and NaHCO (10-15 mL/day for two consecutive days). In summary, BM-MSCs have the ability to suppress the endotoxin-induced systemic inflammatory response and could prove to be a novel approach to therapy for ALI in rats.
The neurological changes elicited by bacterial infection are called sickness behavior. Minocycline (MIN) is neuroprotective with a remarkable brain tissue penetration. MIN was orally administered at a dose 90 mg/kg for 3 days, whereas Escherichia coli was given as a single intraperitoneal injection (0.2 mL of 24 h growth) on the third day. After 24 h of bacterial infection, behavioral tests namely open field and forced swimming were carried out, then animals were decapitated. Rats infected with E. coli displayed reduced struggling time in forced swimming test, as well as, exploration and locomotion in open field test with reduction in neurotransmitters (norepinephrine, dopamine, and serotonin) versus elevation in the inflammatory (tumor necrosis factor-alpha, interferon-gamma) and oxidative stress (thiobarbituric acid reactive substance, reduced glutathione) biomarkers. Inflammatory infiltrates of nuclear cells were observed in brains of infected rats. MIN administration prevented the deleterious effects of E. coli infection, thus protects against sickness behavior possibly via defending from neuroinflammation.
Multiple sclerosis (MS) is a chronic autoimmune demyelinating neurodegenerative central nervous system disorder. The aim of the present study was to investigate the prophylactic effect exerted by the one-time intraperitoneal injection of mesenchymal stem cells (MSCs) 1 × 10 and 14-day intraperitoneal injection of methylprednisolone (MP) 40 mg/kg in an experimental autoimmune encephalomyelitis (EAE). EAE was induced by intradermal injection of rat spinal cord homogenate with complete Freund's adjuvant in Swiss mice. Results of MSCs and MP-treated mice showed a significantly milder disease and fewer clinical scores compared to control mice. They suppressed tumor necrosis factor-alpha and myeloperoxidase and increased interleukin 10, whereas thiobarbituric acid reactive substances and nitric oxide brain contents were reduced to comparable levels between treatment groups. Brain content of GSH was significantly higher in MSCs-treated mice than control mice. It is evident that MSCs have relevant prophylactic effect in an animal model of MS and might represent a valuable tool for stem cell based therapy in MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.