Gliptins have been recently shown to conquer neuronal degeneration in cell cultures via modulating glucagon-like peptide (GLP)-1. This peptide produced in the gut not only crosses the blood-brain barrier but is also synthesized in the brain and acts on GLP-1R exerting central anti-inflammatory and antiapoptotic effects, thus impeding neuronal damage. This study investigated the antiparkinsonian effect of vildagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor in a rat rotenone model targeting mainly the RAGE-NFjB/Nrf2-signaling pathways, to judge the potential anti-inflammatory/antioxidant effects of the drug. Vildagliptin markedly improved the motor performance in the open field and rotarod tests, effects that were emphasized by the accompanied reduction in striatal dopamine content. It modified the striatal energy level (ADP/ ATP) associated with partial antagonism of body weight reduction. This incretin enhancer suppressed nuclear factor (NF)jB and, consequently, the downstream inflammatory mediator tumor necrosis factor-a. Normalization of receptor for advanced glycated end product (RAGE) is a main finding which justifies the anti-inflammatory effects of vildagliptin, together with hampering striatal inducible nitric oxide synthase, intracellular adhesion molecule-1 as well as myeloperoxidase. The antioxidant potential of vildagliptin was depicted as entailing reduction in thiobarbituric acid-reactive substances and the transcriptional factor Nrf-2 level. Vildagliptin guarded against neuronal demise through an antiapoptotic effect as reflected by the reduction in the mitochondrial matrix component cytochrome c and the key downstream executioner caspase-3. In conclusion, vildagliptin is endowed with various neuroprotective effects and thus can be a promising candidate for the management of Parkinson's disease.
The neurotransmitter acetylcholine (ACh) plays a key role in the pathophysiology of brain disorders such as Alzheimer's disease. Understanding the dynamics of ACh concentration changes and kinetics of ACh degradation in the living brain is crucial to unravel the pathophysiology of such diseases and the rational design of therapeutics. In this work, an electrochemical sensor capable of dynamic, label-free, selective, and in situ detection of ACh in a range of 1 nM to 1 mM (with temporal resolution of less than one second) was developed. The sensor was employed for the direct detection of ACh in artificial cerebrospinal fluid and rat brain homogenate, without any prior separation steps. A potentiometric receptor-doped ion-selective electrode (ISE) with selectivity for ACh was designed by taking advantage of the positive charge of ACh. The dynamic range, limit of detection (LOD), and the selectivity of the sensor were optimized stepwise by (i) screening of hydrophobic biomimetic calixarenes to identify receptors that strongly bind to ACh based on shape-selective multitopic recognition, (ii) doping of the ISE sensing membrane with an ACh-binding hydrophobic calixarene to enable selective detection of ACh in complex matrices, (iii) utilizing a hydrophilic calixarene in the inner filling solution of the ISE to buffer the concentration of ACh and, thereby, lower the LOD of the sensor, and (iv) introducing a surface treatment step prior to the measurement by placing the sensor for ∼1 min in a solution of a hydrophilic calixarene to lower the LOD of the sensor even further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.