Pieris rapae and Pentodon algerinus are considered a global threat to agricultural crops and food security; hence, their control is a critical issue. Heterorhabditid and Steinernematid nematodes, along with their symbiotic bacteria, can achieve the optimal biocontrol agent criterion. Therefore, this study aimed to evaluate the efficacy of Heterorhabditis bacteriophora, Steinernema riobravis, and their symbiotic bacteria (Xenorhabdus and Photorhabdus) against P. rapae and P. algerinus larvae. The virulence of entomopathogenic nematodes (EPNs) was determined at different infective juvenile concentrations and exposure times, while the symbiotic bacteria were applied at the concentration of 3 × 107 colony-forming units (CFU)/mL at different exposure times. Gas chromatography–mass spectrophotometry (GC-MS) analysis and the cytotoxic effect of Photorhabdus sp. and Xenorhabdus sp. were determined. The results indicated that H. bacteriophora, S. riobravis, and their symbiotic bacteria significantly (p ≤ 0.001) induced mortality in both insect species. However, H. bacteriophora and its symbiont, Photorhabdus sp., were more virulent. Moreover, the data clarified that both symbiotic bacteria outperformed EPNs against P. rapae but the opposite was true for P. algerinus. GC-MS analysis revealed the main active compounds that have insecticidal activity. However, the results revealed that there was no significant cytotoxic effect. In conclusion, H. bacteriophora, S. riobravis, and their symbiotic bacteria can be an optimal option for bio-controlling both insect species. Furthermore, both symbiotic bacteria can be utilized independently on EPNs for the management of both pests, and, hence, they can be safely incorporated into biocontrol programs and tested against other insect pests.
Drosophila melanogaster has been used as the most successful invertebrate model for studying metabolic diseases such as type 2 diabetes (T2D). We induced T2D by feeding Drosophila larvae on a high-sugar diet (HSD). The glucose and trehalose, glycogen, lipid, triglyceride, and protein levels were determined in HSD-fed larvae.Moreover, larval food intake, water content, size, and weight in addition to the development until pupation were observed. Levels of Drosophila insulin-like peptides (DILPs 2, 3, and 5), as well as adipokinetic hormone (AKH), were also determined in HSD-fed larvae by quantitative real-time polymerase chain reaction. The results demonstrated that HSD could induce elevated levels of glucose, trehalose, glycogen, and proteins in larvae. The larvae consumed less food intake and were smaller, lighter, and less developed on HSD than those on the control diet. Moreover, the water content of larvae fed HSD was similar to that fed the control diet. HSD induced higher expression of DILP3 and AKH, confirming hyperglycemia with insulin resistance. In sum, Drosophila offers an appropriate model for quick and inexpensive in vivo experimentation on human metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.