According to the purpose of the opening and the structural designer, the shape of the web opening is decided. It is too easy to choose the shape of openings from regular shape whether it is circular or rectangular shape. The presence of openings in the web of steel beams decreases stiffness of the beam and introducing a larger deflection than in the steel web opening with solid opening. A steel beam with web opening is analyzed in this paper. ABAQUS software is using for analyzing nonlinear static and dynamic opening of steel beam with different position and supporting conditions.
This paper reports two new tests conducted to augment available data highlighting the structural performance of multistory steel frames under progressive collapse. The investigated steel frames had different geometries, different boundary conditions, different collapse mechanisms, different damping ratios and different connections. Overall, the paper addresses how multistory frames would behave when subjected to local damage or loss of a main structural carrying element. The obtained results can form a data base for nonlinear finite element models. The deformations of the investigated steel frames and failure modes under progressive collapse were predicted from the finite element analysis, with detailed discussions presented.
This paper investigates the behavior of steel frames under progressive collapse using the finite element method. Nonlinear finite element models have been developed and verified against existing data reported in the literature as well as against tests conducted by the authors. The nonlinear material properties of steel and nonlinear geometry were considered in the finite element models. The validated models were used to perform extensive parametric studies investigating different parameters affecting the behavior of steel frames under progressive collapse. The investigated parameters are comprised of different geometries, different number of stories and different dynamic conditions. The force redistribution and failure modes were evaluated from the finite element analyses, with detailed discussions presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.