Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project ''Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt'' (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed based on AVT. Using advanced techniques in both the field testing and the numerical investigations produced reliable FEM specific for the tested tower, which can be further used in more advanced structural investigations for improving the design of such special structures. Keywords Wind turbine tower Á Ambient vibration test Á Zafarana wind farm Á Time history analysis Á Seismic response
The vital components of the transmission line are the electrical transmission towers. They are commonly used to support the phase conductors and shield wires of a transmission line. Also the accurate prediction of tower failure is very important for the reliability and safety of the transmission system. The current research describes nonlinear FE models of predicting the transmission tower failure. In the current FE simulations, the eccentricity and the joint effect of the tower were considered. The current models have been calibrated with results from previous full-scale tower tests and numerical models with good accuracy in terms of both the failure load and the failure mode.
This paper reports two new tests conducted to augment available data highlighting the structural performance of multistory steel frames under progressive collapse. The investigated steel frames had different geometries, different boundary conditions, different collapse mechanisms, different damping ratios and different connections. Overall, the paper addresses how multistory frames would behave when subjected to local damage or loss of a main structural carrying element. The obtained results can form a data base for nonlinear finite element models. The deformations of the investigated steel frames and failure modes under progressive collapse were predicted from the finite element analysis, with detailed discussions presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.