Tissue-resident memory T cells (TRM) stay in the peripheral tissues for long periods of time, do not recirculate, and provide the first line of adaptive immune response in the residing tissues. Although TRM originate from circulating T cells, TRM are physiologically distinct from circulating T cells with the expression of tissue-residency markers, such as CD69 and CD103, and the characteristic profile of transcription factors. Besides defense against pathogens, the functional skew of skin TRM is indicated in chronic skin inflammatory diseases. In psoriasis, IL-17A-producing CD8+ TRM are regarded as one of the pathogenic populations in skin. Although no licensed drugs that directly and specifically inhibit the activity of skin TRM are available to date, psoriatic skin TRM are affected in the current treatments of psoriasis. Targeting skin TRM or using TRM as a potential index for disease severity can be an attractive strategy in psoriasis.
Recent studies have highlighted that human resident memory T cells (TRM) are functionally distinct from circulating T cells. Thus, it can be postulated that skin T cells age differently from blood-circulating T cells. We assessed T-cell density, diversity, and function in individuals of various ages to study the immunologic effects of aging on human skin from two different countries. No decline in the density of T cells was noted with advancing age, and the frequency of epidermal CD49a+ CD8 TRM was increased in elderly individuals regardless of ethnicity. T-cell diversity and antipathogen responses were maintained in the skin of elderly individuals but declined in the blood. Our findings demonstrate that in elderly individuals, skin T cells maintain their density, diversity, and protective cytokine production despite the reduced T-cell diversity and function in blood. Skin resident T cells may represent a long-lived, highly protective reservoir of immunity in elderly people.
Autoantibodies to melanoma differentiation-associated protein 5 (MDA5) are associated with a subset of patients with dermatomyositis (DM) who have rapidly progressive interstitial lung disease (RP-ILD) with poor prognosis. Intensive immunosuppressive therapy is initiated before irreversible lung damage can occur; however, there are few lines of evidence for the treatment of RP-ILD. Here, we report three cases of anti-MDA5 antibody-associated DM with RP-ILD in which the patients were treated with combined-modality therapy, including high-dose prednisolone, tacrolimus, intravenous cyclophosphamide and intravenous immunoglobulin (IVIG). In all three cases, serum ferritin levels, which are known to represent the disease activity of RP-ILD, were decreased after IVIG administration. IVIG might contribute to the control of the disease activity of anti-MDA5 antibody-positive DM. Moreover, palmar violaceous macules/papules around the interphalangeal joints, which was observed in all three cases in the incipient stage, might be a useful sign in suggesting a diagnosis of anti-MDA5 antibody-associated DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.