More than 90% of clear cell renal cell carcinomas (ccRCC) exhibit inactivation of the von Hippel-Lindau (pVHL) tumor suppressor, establishing it as the major underlying cause of this malignancy. pVHL inactivation results in stabilization of the hypoxia-inducible transcription factors, HIF1a and HIF2a, leading to expression of a genetic program essential for the initiation and progression of ccRCC. Herein, we describe the potent, selective, and orally active small-molecule inhibitor PT2385 as a specific antagonist of HIF2a that allosterically blocks its dimerization with the
Design, syntheses, and testing of new, fullerene-wheeled single molecular nanomachines, namely, nanocars and nanotrucks, are presented. These nanovehicles are composed of three basic components that include spherical fullerene wheels, freely rotating alkynyl axles, and a molecular chassis. The use of spherical wheels based on C60 and freely rotating axles based on alkynes permits directed nanoscale rolling of the molecular structure on gold surfaces. The rolling motion observed by STM resembles the same motion performed by macroscopic entities in which rolling occurs perpendicular to the axles. A new synthesis methodology, in situ ethynylation of fullerenes, was developed for the realization of the fullerene-wheeled molecular machines. Four generations of the fullerene-wheeled structures were developed, and the latest fourth generation nanocar, 3b, along with three-wheeled triangular compounds, 4a and 4b, provided definitive evidence for fullerene-based wheel-like rolling motion, not stick-slip or sliding translation. The studies here underscore the ability to control directionality of motion in molecular-sized nanostructures through precise molecular design and synthesis.
The hypoxia-inducible
factor 2α (HIF-2α) is a key oncogenic
driver in clear cell renal cell carcinoma (ccRCC). Our first HIF-2α
inhibitor PT2385 demonstrated promising proof of concept clinical
activity in heavily pretreated advanced ccRCC patients. However, PT2385
was restricted by variable and dose-limited pharmacokinetics resulting
from extensive metabolism of PT2385 to its glucuronide metabolite.
Herein we describe the discovery of second-generation HIF-2α
inhibitor PT2977 with increased potency and improved pharmacokinetic
profile achieved by reduction of phase 2 metabolism. Structural modification
by changing the geminal difluoro group in PT2385 to a vicinal difluoro
group resulted in enhanced potency, decreased lipophilicity, and significantly
improved pharmacokinetic properties. In a phase 1 dose-escalation
study, the clinical pharmacokinetics for PT2977 supports the hypothesis
that attenuating the rate of glucuronidation would improve exposure
and reduce variability in patients. Early evidence of clinical activity
shows promise for PT2977 in the treatment of ccRCC.
HIF-2α, a member of the HIF family of transcription factors, is a key oncogenic driver in cancers such as clear cell renal cell carcinoma (ccRCC). A signature feature of these cancers is the overaccumulation of HIF-2α protein, often by inactivation of the E3 ligase VHL (von Hippel−Lindau). Herein we disclose our structure based drug design (SBDD) approach that culminated in the identification of PT2385, the first HIF-2α antagonist to enter clinical trials. Highlights include the use of a putative n → π* Ar interaction to guide early analog design, the conformational restriction of an essential hydroxyl moiety, and the remarkable impact of fluorination near the hydroxyl group. Evaluation of select compounds from two structural classes in a sequence of PK/PD, efficacy, PK, and metabolite profiling identified 10i (PT2385, luciferase EC 50 = 27 nM) as the clinical candidate. Finally, a retrospective crystallographic analysis describes the structural perturbations necessary for efficient antagonism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.